计算机技术、信息工程 |
|
|
|
|
基于时间维超分辨率的视频快照压缩成像重构 |
陈赞( ),李冉,冯远静,李永强 |
浙江工业大学 信息工程学院,浙江 杭州 310023 |
|
Video snapshot compressive imaging reconstruction based on temporal super-resolution |
Zan CHEN( ),Ran LI,Yuanjing FENG,Yongqiang LI |
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
陈赞,李冉,冯远静,李永强. 基于时间维超分辨率的视频快照压缩成像重构[J]. 浙江大学学报(工学版), 2025, 59(5): 956-963.
Zan CHEN,Ran LI,Yuanjing FENG,Yongqiang LI. Video snapshot compressive imaging reconstruction based on temporal super-resolution. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 956-963.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.009
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/956
|
1 |
CHEN Z, GUO W, FENG Y, et al Deep-learned regularization and proximal operator for image compressive sensing[J]. IEEE Transactions on Image Processing, 2021, 30: 7112- 7126
|
2 |
QIAO M, LIU X, YUAN X Snapshot spatial–temporal compressive imaging[J]. Optics Letters, 2020, 45 (7): 1659- 1662
doi: 10.1364/OL.386238
|
3 |
LU R, CHEN B, LIU G, et al Dual-view snapshot compressive imaging via optical flow aided recurrent neural network[J]. International Journal of Computer Vision, 2021, 129 (12): 3279- 3298
doi: 10.1007/s11263-021-01532-1
|
4 |
LLULL P, LIAO X, YUAN X, et al Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21 (9): 10526- 10545
doi: 10.1364/OE.21.010526
|
5 |
YUAN X, BRADY D, KATSAGGELOS A Snapshot compressive imaging: theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38 (2): 65- 88
doi: 10.1109/MSP.2020.3023869
|
6 |
SUN Y, YUAN X, PANG S Compressive high-speed stereo imaging[J]. Optics Express, 2017, 25 (15): 18182- 18190
doi: 10.1364/OE.25.018182
|
7 |
ZHANG Z, DENG C, LIU Y, et al Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture[J]. Photonics Research, 2021, 9 (11): 2277- 2287
doi: 10.1364/PRJ.435256
|
8 |
ZHAN C, HU H, SUI X, et al Joint resource allocation and 3D aerial trajectory design for video streaming in UAV communication systems[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31 (8): 3227- 3241
|
9 |
LIN F, FU C, HE Y, et al Learning temporary block-based bidirectional incongruity-aware correlation filters for efficient UAV object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31 (6): 2160- 2174
|
10 |
LIU Y, YUAN X, SUO J, et al Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (12): 2990- 3006
|
11 |
YUAN X, LIU Y, SUO J, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 1447-1457.
|
12 |
YUAN X, LIU Y, SUO J, et al Plug-and-play algorithms for video snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44 (10): 7093- 7111
|
13 |
YANG J, YUAN X, LIAO X, et al Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23 (11): 4863- 4878
doi: 10.1109/TIP.2014.2344294
|
14 |
SHI B, WANG Y, LI D Provable general bounded denoisers for snapshot compressive imaging with convergence guarantee[J]. IEEE Transactions on Computational Imaging, 2023, 9 (2): 55- 69
|
15 |
SHI B, LI D, WANG Y, et al Provable deep video denoiser using spatial–temporal information for video snapshot compressive imaging: algorithm and convergence analysis[J]. Signal Processing, 2024, 214 (1): 109236
|
16 |
SHI B, WANG Y, LIAN Q. A trainable bounded denoiser using double tight frame network for snapshot compressive imaging [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Singapore: IEEE, 2022: 1516-1520.
|
17 |
QIAO M, MENG Z, MA J, et al Deep learning for video compressive sensing[J]. Apl Photonics, 2020, 5 (3): 030801
doi: 10.1063/1.5140721
|
18 |
CHENG Z, CHEN B, LIU G, et al. Memory-efficient network for large-scale video compressive sensing [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 16246-16255.
|
19 |
HAN X, WU B, SHOU Z, et al. Tensor FISTA-Net for real-time snapshot compressive imaging [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020, 34(7): 10933-10940.
|
20 |
MENG Z, YUAN X, JALALI S Deep unfolding for snapshot compressive imaging[J]. International Journal of Computer Vision, 2023, 131 (11): 2933- 2958
doi: 10.1007/s11263-023-01844-4
|
21 |
WANG Z, ZHANG H, CHENG Z, et al. Metasci: scalable and adaptive reconstruction for video compressive sensing [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 2083-2092.
|
22 |
NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive convolution [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 670-679.
|
23 |
LIU Z, YEH R, TANG X, et al. Video frame synthesis using deep voxel flow [C]// IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 4463-4471.
|
24 |
ZHANG Y, LIU X, WU B, et al. Video synthesis via transform-based tensor neural network [C]// Proceedings of the 28th ACM International Conference on Multimedia . Melbourne: ACM, 2020: 2454-2462.
|
25 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
26 |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 1492-1500.
|
27 |
HUANG G, LIU S, MAATEN L, et al. Condensenet: an efficient DenseNet using learned group convolutions [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 2752-2761.
|
28 |
MIAO Y, ZHAO X, WANG J, et al Snapshot compressive imaging using domain-factorized deep video prior[J]. IEEE Transactions on Computational Imaging, 2024, 10 (1): 93- 102
|
29 |
LI S, ZHENG Z, DAI W, et al. REV-AE: a learned frame set for image reconstruction [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1823-1827.
|
30 |
WU Z, ZHANG J, MOU C. Dense deep unfolding network with 3D-CNN prior for snapshot compressive imaging [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4872-4881.
|
31 |
LI S, DAI W, ZHENG Z, et al Reversible autoencoder: a CNN-based nonlinear lifting scheme for image reconstruction[J]. IEEE Transactions on Signal Processing, 2021, 69 (5): 3117- 3131
|
32 |
CHEN Z, LI R, LI Y, et al. Video snapshot compressive imaging via optical flow [C]// IEEE International Conference on Multimedia and Expo . Brisbane: IEEE, 2023: 2177-2182.
|
33 |
WANG L, CAO M, YUAN X. Efficientsci: densely connected network with space-time factorization for large-scale video snapshot compressive imaging [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 18477-18486.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|