机械工程、能源工程 |
|
|
|
|
基于梁函数-Ritz法的圆柱壳模态特性分析 |
徐港辉( ),祝长生*( ) |
浙江大学 电气工程学院,浙江 杭州 310027 |
|
Modal characteristics analysis of cylindrical shells based on beam functions-Ritz method |
Gang-hui XU( ),Chang-sheng ZHU*( ) |
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
LEISSA A W. Vibration of shells [M]. New York: Acoustical Society of America, 1993.
|
2 |
曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989.
|
3 |
刘彦琦, 秦朝烨, 褚福磊 不同边界条件下旋转薄壁圆柱壳的振动特性[J]. 清华大学学报: 自然科学版, 2012, 52 (1): 5- 9 LIU Yan-qi, QIN Zhao-ye, CHU Fu-lei Vibration characteristics of rotating thin cylindrical shells for various boundary conditions[J]. Journal of Tsinghua University: Science and Technology, 2012, 52 (1): 5- 9
|
4 |
QU Y G, HUA H X, MENG G A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries[J]. Composite Structures, 2013, 95: 307- 321
doi: 10.1016/j.compstruct.2012.06.022
|
5 |
QIN Z Y, CHU F L, ZU J Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study[J]. International Journal of Mechanical Sciences, 2017, 133: 91- 99
doi: 10.1016/j.ijmecsci.2017.08.012
|
6 |
DONG Y H, HU H Y, WANG L F Critical examination on in-plane inertias for vibration characteristics of cylindrical shells[J]. Journal of Sound and Vibration, 2021, 511: 116350
doi: 10.1016/j.jsv.2021.116350
|
7 |
LEE H W, KWAK M K Free vibration analysis of a circular cylindrical shell using the Rayleigh–Ritz method and comparison of different shell theories[J]. Journal of Sound and Vibration, 2015, 353: 344- 377
doi: 10.1016/j.jsv.2015.05.028
|
8 |
孙述鹏, 曹登庆, 初世明 转动薄壁圆柱壳行波振动响应分析[J]. 振动工程学报, 2013, 26 (3): 459- 466 SUN Shu-peng, CAO Deng-qing, CHU Shi-ming Analysis of travelling wave vibration response for thin rotating cylindrical shell[J]. Journal of Vibration Engineering, 2013, 26 (3): 459- 466
doi: 10.3969/j.issn.1004-4523.2013.03.021
|
9 |
罗忠, 王宇, 孙宁, 等 不同边界条件下旋转薄壁短圆柱壳的强迫振动响应计算[J]. 机械工程学报, 2015, 51 (9): 64- 72 LUO Zhong, WANG Yu, SUN Ning, et al Forced vibration response calculation of rotating short thin cylindrical shells for various boundary conditions[J]. Journal of Mechanical Engineering, 2015, 51 (9): 64- 72
doi: 10.3901/JME.2015.09.064
|
10 |
刘一沛, 吕凯波, 张志浩, 等 时变因素作用下薄壁筒工件车削振动特性与实验[J]. 航空动力学报, 2022, 37 (3): 600- 606 LIU Yi-pei, LV Kai-bo, ZHANG Zhi-hao, et al Vibration characteristics and experiments of thin-walled cylinders in turning process with time-varying factors[J]. Journal of Aerospace Power, 2022, 37 (3): 600- 606
|
11 |
DAI L, YANG T J, DU J T, et al An exact series solution for the vibration analysis of cylindrical shells with arbitrary boundary conditions[J]. Applied Acoustics, 2013, 74 (3): 440- 449
doi: 10.1016/j.apacoust.2012.09.001
|
12 |
JIN G Y, YE T G, SU Z. Structural vibration: a uniform accurate solution for laminated beams, plates and shells with general boundary conditions [M]. Berlin: Springer-Verlag, 2015.
|
13 |
张帅, 李天匀, 朱翔, 等 改进傅里叶级数法求解封口锥柱球组合壳的自由振动[J]. 振动工程学报, 2021, 34 (3): 601- 609 ZHANG Shuai, LI Tian-yun, ZHU Xiang, et al Modified Fourier series method to solve the free vibration of the coupled conical-cylindrical-spherical shell with closed ends[J]. Journal of Vibration Engineering, 2021, 34 (3): 601- 609
|
14 |
SONG X Y, HAN Q K, ZHAI J Y Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method[J]. Composite Structures, 2015, 134: 820- 830
doi: 10.1016/j.compstruct.2015.08.134
|
15 |
SUN W, ZHU M W, WANG Z Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints[J]. Aerospace Science and Technology, 2017, 63: 232- 244
doi: 10.1016/j.ast.2017.01.002
|
16 |
PELLICANO F Vibrations of circular cylindrical shells: theory and experiments[J]. Journal of Sound and Vibration, 2007, 303 (1/2): 154- 170
|
17 |
ZHANG Y, SONG H, YU X G, et al Modeling and analysis of forced vibration of the thin-walled cylindrical shell with arbitrary multi-ring hard coating under elastic constraint[J]. Thin-Walled Structures, 2022, 173: 109037
doi: 10.1016/j.tws.2022.109037
|
18 |
LI H C, PANG F Z, MIAO X H, et al Jacobi–Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: a unified formulation[J]. Computers and Mathematics with Applications, 2019, 77 (2): 427- 440
doi: 10.1016/j.camwa.2018.09.046
|
19 |
刘延柱, 陈立群, 陈文良. 振动力学[M]. 第3版. 北京: 高等教育出版社, 2019.
|
20 |
DONG Y H, HU H Y, WANG L F A comprehensive study on the coupled multi-mode vibrations of cylindrical shells[J]. Mechanical Systems and Signal Processing, 2022, 169: 108730
doi: 10.1016/j.ymssp.2021.108730
|
21 |
RAO C K, MIRZA S A note on vibrations of generally restrained beams[J]. Journal of Sound and Vibration, 1989, 130 (3): 453- 465
doi: 10.1016/0022-460X(89)90069-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|