Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1794-1803    DOI: 10.3785/j.issn.1008-973X.2023.09.011
机械工程、能源工程     
基于梁函数-Ritz法的圆柱壳模态特性分析
徐港辉(),祝长生*()
浙江大学 电气工程学院,浙江 杭州 310027
Modal characteristics analysis of cylindrical shells based on beam functions-Ritz method
Gang-hui XU(),Chang-sheng ZHU*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1174 KB)   HTML
摘要:

单项梁函数作为圆柱壳轴向振型容许函数时计算精度不足,基于不同薄壳理论所得研究结果难以直接对比,为此将梁函数与Ritz法相结合,建立包含不同薄壳理论的统一方法,用于分析圆柱壳模态特性. 当梁函数项数取1时,梁函数-Ritz法退化为单项梁函数法,即单项梁函数法是梁函数-Ritz法的特例. 通过与有限元仿真及现有文献数据的对比,澄清现有文献在梁函数是否适用于模拟圆柱壳固支或自由边界条件上存在的分歧. 在不同边界条件下,总结长径比与厚径比对圆柱壳模态频率及理论计算精度的影响规律,得出不同薄壳理论的适用范围. 考虑的薄壳理论包括Donnell、Reissner、Sanders及Love理论. 结果表明,梁函数-Ritz法可以有效提升单项梁函数法的计算精度;Donnell理论的计算精度明显低于其他3种理论.

关键词: 圆柱壳模态梁函数容许函数Ritz法薄壳理论    
Abstract:

The calculation accuracy of a single beam function is insufficient, when the function is used as an admissible function of the axial modal shape of cylindrical shells, and the results obtained based on different thin shell theories are difficult to compare directly. The beam function was combined with the Ritz method to establish a unified method including different thin shell theories for analyzing the modal characteristics of cylindrical shells. When the number of the beam function terms was set to one, the beam functions-Ritz method degenerated to the single beam function method, i.e., the single beam function method was a special case of the beam functions-Ritz method. By comparing with the finite element simulation and the existing literature data, the disagreement in the existing literature on whether the beam function is suitable for simulating the clamped or free boundary conditions of cylindrical shells was clarified. The effects of length-to-radius ratio and thickness-to-radius ratio on the modal frequencies of cylindrical shells under different boundary conditions and the corresponding theoretical calculation accuracy were studied, and then the applicable scope of different thin shell theories was summarized. Four thin shell theories were considered, including the Donnell, Reissner, Sanders and Love theories. Results show that the beam functions-Ritz method can effectively improve the calculation accuracy of the single beam function method, and the calculation accuracy of Donnell theory was obviously lower than that of the other three theories.

Key words: cylindrical shell    mode    beam function    admissible function    Ritz method    thin shell theories
收稿日期: 2022-11-11 出版日期: 2023-10-16
CLC:  O 326  
基金资助: 国家自然科学基金资助项目(51975516);重点基础研究项目(2020-ZD-232-00)
通讯作者: 祝长生     E-mail: gh_xu@zju.edu.cn;zhu_zhang@zju.edu.cn
作者简介: 徐港辉(1995—),男,博士生,从事电机振动分析与振动控制研究. orcid.org/0000-0002-8382-4798. E-mail: gh_xu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐港辉
祝长生

引用本文:

徐港辉,祝长生. 基于梁函数-Ritz法的圆柱壳模态特性分析[J]. 浙江大学学报(工学版), 2023, 57(9): 1794-1803.

Gang-hui XU,Chang-sheng ZHU. Modal characteristics analysis of cylindrical shells based on beam functions-Ritz method. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1794-1803.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1794

图 1  各向同性薄圆柱壳示意图
薄壳理论 $ {\varepsilon _x} $ $ {\varepsilon _\theta } $ $ {\gamma _{x\theta }} $
Donnell $ {\varepsilon _{x_ {\rm{D}}}} $ $ {\varepsilon _{\theta_ {\rm{D}}}} $ $ {\gamma _{x\theta_ {\rm{D}}}} $
Reissner $ {\varepsilon _{x_ {\rm{D}}}} $ ${\varepsilon _{\theta_ {\rm{D}}} }+z\dfrac{1}{ { {r^2} } }\dfrac{ {\partial v} }{ {\partial \theta } }$ ${\gamma _{x\theta_ {\rm{D}}} }+z\dfrac{1}{r}\dfrac{ {\partial v} }{ {\partial x} }$
Sanders $ {\varepsilon _{x_ {\rm{D}}}} $ ${\varepsilon _{\theta_ {\rm{D}}} }+z\dfrac{1}{ { {r^2} } }\dfrac{ {\partial v} }{ {\partial \theta } }$ ${\gamma _{x\theta_ {\rm{D}}} }+z\left(\dfrac{3}{ {2r} }\dfrac{ {\partial v} }{ {\partial x} } - \dfrac{1}{ {2{r^2} } }\dfrac{ {\partial u} }{ {\partial \theta } }\right)$
Love $ {\varepsilon _{x_ {\rm{D}}}} $ ${\varepsilon _{\theta_ {\rm{D}}} }+z\dfrac{1}{ { {r^2} } }\dfrac{ {\partial v} }{ {\partial \theta } }$ ${\gamma _{x\theta_ {\rm{D}}} }+z\dfrac{2}{r}\dfrac{ {\partial v} }{ {\partial x} }$
表 1  常用薄壳理论对比
图 2  圆柱壳模态频率的理论计算值随项数的变化关系
图 3  不同边界条件下不同项数理论计算的相对误差
n fC-C/Hz fC-F/Hz fS-S/Hz
文献[6] I=1 I=50 FEM 文献[6] I=1 I=50 FEM 文献[6] I=1 I=50 FEM
0 8300.4 8300.4 7829.2 7784.4 2295.4 5341.7 3903.4 3892.1 7784.2 7784.1 7784.1 7784.1
1 5314.9 5314.8 4916.8 4895.5 1325.2 2830.7 2309.0 2304.8 4811.1 4811.1 4811.1 4811.1
2 3452.8 3452.7 3164.2 3150.2 588.4 1317.3 1152.5 1151.4 2750.0 2750.0 2750.0 2750.0
3 2361.9 2361.9 2172.0 2163.7 303.3 700.9 637.9 637.3 1630.0 1630.0 1630.0 1629.8
4 1692.2 1692.1 1569.1 1564.4 159.8 432.2 402.5 401.0 1041.7 1041.7 1041.7 1041.1
5 1263.8 1263.8 1182.9 1179.9 80.9 317.2 301.8 298.6 723.5 723.5 723.5 722.1
6 986.3 986.3 931.9 929.3 194.2 293.7 286.2 281.2 555.9 555.9 555.9 553.3
7 814.1 814.1 777.2 774.2 283.5 330.3 326.8 320.5 488.4 488.4 488.4 484.5
8 724.9 724.9 700.1 696.5 377.6 402.5 400.9 393.9 494.5 494.5 494.5 489.5
9 705.1 705.1 688.8 684.4 481.5 496.8 496.0 488.5 551.8 551.7 551.7 546.2
表 2  3种边界条件下的圆柱壳模态频率对比(梁函数)
(m,n) fC-C/Hz
文献[5]-MF 文献[5]-OP 文献[5]-CP 本研究I=25
(1,9) 684.7 684.2 684.0 684.7
(1,8) 697.3 696.3 696.2 697.1
(1,10) 726.2 725.9 726.2 726.0
(1,7) 775.4 774.0 774.3 775.7
(1,11) 808.1 807.8 808.1 808.0
(1,12) 919.9 919.6 919.6 919.8
(1,6) 930.6 928.8 929.2 932.0
(1,13) 1054.0 1054.0 1054.0 1054.1
(2,11) 1141.0 1139.0 1139.0 1156.2
(2,10) 1167.0 1165.0 1165.0 1190.6
表 3  两端固支圆柱壳模态频率对比(不同类型容许函数)
(m,n) fS-S/Hz
文献[5]-MF 文献[5]-OP 文献[5]-CP 本研究I=25
(1,7) 484.6 484.6 484.6 484.6
(1,8) 489.6 489.6 489.6 489.6
(1,9) 546.2 546.2 546.2 546.2
(1,6) 553.3 553.3 553.3 553.4
(1,10) 636.8 636.8 636.8 636.9
(1,5) 722.1 722.1 722.1 722.2
(1,11) 750.7 750.7 750.7 750.7
(1,12) 882.2 882.2 882.2 882.3
(2,10) 968.1 968.1 968.1 968.2
(2,11) 983.4 983.4 983.4 983.5
表 4  两端简支圆柱壳模态频率对比(不同类型容许函数)
图 4  圆柱壳轴向振型(I=50, FEM)与梁弯曲振型(I=1)对比
图 5  不同长径比与厚径比时圆柱壳模态频率的分布
图 6  不同长径比与厚径比时理论计算结果的误差分布
1 LEISSA A W. Vibration of shells [M]. New York: Acoustical Society of America, 1993.
2 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989.
3 刘彦琦, 秦朝烨, 褚福磊 不同边界条件下旋转薄壁圆柱壳的振动特性[J]. 清华大学学报: 自然科学版, 2012, 52 (1): 5- 9
LIU Yan-qi, QIN Zhao-ye, CHU Fu-lei Vibration characteristics of rotating thin cylindrical shells for various boundary conditions[J]. Journal of Tsinghua University: Science and Technology, 2012, 52 (1): 5- 9
4 QU Y G, HUA H X, MENG G A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries[J]. Composite Structures, 2013, 95: 307- 321
doi: 10.1016/j.compstruct.2012.06.022
5 QIN Z Y, CHU F L, ZU J Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study[J]. International Journal of Mechanical Sciences, 2017, 133: 91- 99
doi: 10.1016/j.ijmecsci.2017.08.012
6 DONG Y H, HU H Y, WANG L F Critical examination on in-plane inertias for vibration characteristics of cylindrical shells[J]. Journal of Sound and Vibration, 2021, 511: 116350
doi: 10.1016/j.jsv.2021.116350
7 LEE H W, KWAK M K Free vibration analysis of a circular cylindrical shell using the Rayleigh–Ritz method and comparison of different shell theories[J]. Journal of Sound and Vibration, 2015, 353: 344- 377
doi: 10.1016/j.jsv.2015.05.028
8 孙述鹏, 曹登庆, 初世明 转动薄壁圆柱壳行波振动响应分析[J]. 振动工程学报, 2013, 26 (3): 459- 466
SUN Shu-peng, CAO Deng-qing, CHU Shi-ming Analysis of travelling wave vibration response for thin rotating cylindrical shell[J]. Journal of Vibration Engineering, 2013, 26 (3): 459- 466
doi: 10.3969/j.issn.1004-4523.2013.03.021
9 罗忠, 王宇, 孙宁, 等 不同边界条件下旋转薄壁短圆柱壳的强迫振动响应计算[J]. 机械工程学报, 2015, 51 (9): 64- 72
LUO Zhong, WANG Yu, SUN Ning, et al Forced vibration response calculation of rotating short thin cylindrical shells for various boundary conditions[J]. Journal of Mechanical Engineering, 2015, 51 (9): 64- 72
doi: 10.3901/JME.2015.09.064
10 刘一沛, 吕凯波, 张志浩, 等 时变因素作用下薄壁筒工件车削振动特性与实验[J]. 航空动力学报, 2022, 37 (3): 600- 606
LIU Yi-pei, LV Kai-bo, ZHANG Zhi-hao, et al Vibration characteristics and experiments of thin-walled cylinders in turning process with time-varying factors[J]. Journal of Aerospace Power, 2022, 37 (3): 600- 606
11 DAI L, YANG T J, DU J T, et al An exact series solution for the vibration analysis of cylindrical shells with arbitrary boundary conditions[J]. Applied Acoustics, 2013, 74 (3): 440- 449
doi: 10.1016/j.apacoust.2012.09.001
12 JIN G Y, YE T G, SU Z. Structural vibration: a uniform accurate solution for laminated beams, plates and shells with general boundary conditions [M]. Berlin: Springer-Verlag, 2015.
13 张帅, 李天匀, 朱翔, 等 改进傅里叶级数法求解封口锥柱球组合壳的自由振动[J]. 振动工程学报, 2021, 34 (3): 601- 609
ZHANG Shuai, LI Tian-yun, ZHU Xiang, et al Modified Fourier series method to solve the free vibration of the coupled conical-cylindrical-spherical shell with closed ends[J]. Journal of Vibration Engineering, 2021, 34 (3): 601- 609
14 SONG X Y, HAN Q K, ZHAI J Y Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method[J]. Composite Structures, 2015, 134: 820- 830
doi: 10.1016/j.compstruct.2015.08.134
15 SUN W, ZHU M W, WANG Z Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints[J]. Aerospace Science and Technology, 2017, 63: 232- 244
doi: 10.1016/j.ast.2017.01.002
16 PELLICANO F Vibrations of circular cylindrical shells: theory and experiments[J]. Journal of Sound and Vibration, 2007, 303 (1/2): 154- 170
17 ZHANG Y, SONG H, YU X G, et al Modeling and analysis of forced vibration of the thin-walled cylindrical shell with arbitrary multi-ring hard coating under elastic constraint[J]. Thin-Walled Structures, 2022, 173: 109037
doi: 10.1016/j.tws.2022.109037
18 LI H C, PANG F Z, MIAO X H, et al Jacobi–Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: a unified formulation[J]. Computers and Mathematics with Applications, 2019, 77 (2): 427- 440
doi: 10.1016/j.camwa.2018.09.046
19 刘延柱, 陈立群, 陈文良. 振动力学[M]. 第3版. 北京: 高等教育出版社, 2019.
20 DONG Y H, HU H Y, WANG L F A comprehensive study on the coupled multi-mode vibrations of cylindrical shells[J]. Mechanical Systems and Signal Processing, 2022, 169: 108730
doi: 10.1016/j.ymssp.2021.108730
21 RAO C K, MIRZA S A note on vibrations of generally restrained beams[J]. Journal of Sound and Vibration, 1989, 130 (3): 453- 465
doi: 10.1016/0022-460X(89)90069-2
[1] 张灵维,周正东,许云飞,王嘉文,吉文韬,宋泽峰. 基于特征融合的语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2023, 57(4): 726-734.
[2] 杨帆,宁博,李怀清,周新,李冠宇. 基于语义增强特征融合的多模态图像检索模型[J]. 浙江大学学报(工学版), 2023, 57(2): 252-258.
[3] 于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
[4] 陈巧红,裴皓磊,孙麒. 基于视觉关系推理与上下文门控机制的图像描述[J]. 浙江大学学报(工学版), 2022, 56(3): 542-549.
[5] 曾素佳,庞善民,郝问裕. 深度监督对齐的零样本图像分类方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2204-2214.
[6] 黄炜,陈田,吴入军. 基于门控循环单元与误差修正的短期负荷预测[J]. 浙江大学学报(工学版), 2021, 55(9): 1625-1633.
[7] 任超,阎高伟,程兰,王芳. 基于最大均值差异的多模态过程过渡模态识别方法[J]. 浙江大学学报(工学版), 2021, 55(3): 563-570.
[8] 陈志刚,万永菁,王于蓝,蒋翠玲,陈霞. 基于异构低秩多模态融合网络的后囊膜混浊预测[J]. 浙江大学学报(工学版), 2021, 55(11): 2045-2053.
[9] 王进,王向坤,扶建辉,陆国栋,金超超,陈燕智. 重载机器人横梁结构静动态特性分析与优化[J]. 浙江大学学报(工学版), 2021, 55(1): 124-134.
[10] 李阳健,何伟,刘宏伟,李伟,林勇刚,顾亚京. 水平轴海流能机组传动链主动阻尼控制技术[J]. 浙江大学学报(工学版), 2020, 54(7): 1355-1361.
[11] 胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.
[12] 赵佳雷,周叮,张建东,胡朝斌. 基于Chebyshev-Ritz法分析多裂纹梁自振特性[J]. 浙江大学学报(工学版), 2020, 54(4): 778-786.
[13] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[14] 伍晓顺,夏巨伟,胡岳芳. 基于跨模型模态应变能指标的网架结构损伤定位[J]. 浙江大学学报(工学版), 2020, 54(2): 248-256.
[15] 于露,金龙哲,徐明伟,刘建国. 基于HHT分解光电容积脉搏波信号的人体血液流变信息评估[J]. 浙江大学学报(工学版), 2020, 54(2): 340-347.