计算机技术 |
|
|
|
|
基于特征融合和一致性损失的双目低光照增强 |
廖嘉文1( ),庞彦伟1,2,*( ),聂晶1,3,孙汉卿1,曹家乐1 |
1. 天津大学 电气自动化与信息工程学院,天津 300072 2. 上海人工智能实验室,上海 200232 3. 重庆大学 微电子与通信工程学院,重庆 401331 |
|
Stereo low-light enhancement based on feature fusion and consistency loss |
Jia-wen LIAO1( ),Yan-wei PANG1,2,*( ),Jing NIE1,3,Han-qing SUN1,Jia-le CAO1 |
1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China 2. Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China 3. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China |
引用本文:
廖嘉文,庞彦伟,聂晶,孙汉卿,曹家乐. 基于特征融合和一致性损失的双目低光照增强[J]. 浙江大学学报(工学版), 2023, 57(12): 2456-2466.
Jia-wen LIAO,Yan-wei PANG,Jing NIE,Han-qing SUN,Jia-le CAO. Stereo low-light enhancement based on feature fusion and consistency loss. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2456-2466.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.013
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2456
|
1 |
WANG Y, WAN R, YANG W, et al. Low-light image enhancement with normalizing flow [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2022: 2604-2612.
|
2 |
LV F, LI Y, LU F Attention guided low-light image enhancement with a large scale low-light simulation dataset[J]. International Journal of Computer Vision, 2021, 129: 2175- 2193
doi: 10.1007/s11263-021-01466-8
|
3 |
WANG L, LIU Z, SIU W, et al Lightening network for low-light image enhancement[J]. IEEE Transactions on Image Processing, 2020, 29: 7984- 7996
doi: 10.1109/TIP.2020.3008396
|
4 |
ZHOU S, LI C, LOY C C. LEDNet: joint low-light enhancement and deblurring in the dark [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2022: 573-589.
|
5 |
ZHENG C, SHI D, SHI W. Adaptive unfolding total variation network for low-light image enhancement [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4439-4448.
|
6 |
WU W, WENG J, ZHANG P, et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5901-5910.
|
7 |
HAO S, HAN X, GUO Y, et al Low-light image enhancement with semi-decoupled decomposition[J]. IEEE Transactions on Multimedia, 2020, 22 (12): 3025- 3038
doi: 10.1109/TMM.2020.2969790
|
8 |
GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1777–1786.
|
9 |
MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5627-5636.
|
10 |
ZHANG Z, ZHENG H, HONG R, et al. Deep color consistent network for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1889-1898.
|
11 |
WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement [C]// Proceedings of the 29th British Machine Vision Conference. Newcastle Upon Tyne: [s.n.], 2018.
|
12 |
CHEN C, CHEN Q, XU J, et al. Learning to see in the dark [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3291-3300.
|
13 |
PANG Y, NIE J, XIE J, et al. BidNet: binocular image dehazing without explicit disparity estimation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5931-5940.
|
14 |
ZHOU S, ZHANG J, ZUO W, et al. DAVANet: stereo deblurring with view aggregation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 10996-11005.
|
15 |
ZHANG K, LUO W, REN W, et al. Beyond monocular deraining: stereo image deraining via semantic understanding [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2020: 71-89.
|
16 |
HUANG J, FU X, XIAO Z, et al Low-light stereo image enhancement[J]. IEEE Transactions on Multimedia, 2022, 25: 2978- 2992
|
17 |
LI C, GUO C, LOY C C Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (8): 4225- 4238
|
18 |
WANG L, WANG Y, LIANG Z, et al. Learning parallax attention for stereo image super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12250-12259.
|
19 |
MITTAL A, MOORTHY A K, BOVIK A C No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21 (12): 4695- 4708
doi: 10.1109/TIP.2012.2214050
|
20 |
MITTAL A, SOUNDARARAJAN R, BOVIK A C Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20 (3): 209- 212
|
21 |
VENKATANATH N, PRANEETH D, BH M C, et al. Blind image quality evaluation using perception based features [C]// Proceedings of the Twenty First National Conference on Communications. Mumbai: IEEE, 2015: 1-6.
|
22 |
WANG S, ZHENG J, HU H, et al Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22 (9): 3538- 3548
doi: 10.1109/TIP.2013.2261309
|
23 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 586-595.
|
24 |
FAN M, WANG W, YANG W, et al. Integrating semantic segmentation and retinex model for low-light image enhancement [C]// Proceedings of the 28th ACM International Conference on Multimedia. [S.l.]: ACM, 2020: 2317-2325.
|
25 |
WANG W, WEI C, YANG W, et al. GLADNet: low-light enhancement network with global awareness [C]// Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition. Xi’an: IEEE, 2018: 751-755.
|
26 |
LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10561-10570.
|
27 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
|
28 |
彭国福, 林正浩 图像处理中Gamma校正的研究和实现[J]. 电子工程师, 2006, 32 (2): 30- 32 PENG Guo-fu, LIN Zheng-hao A study on Gamma correction and its implementation in image processing[J]. Electronic Engineer, 2006, 32 (2): 30- 32
doi: 10.3969/j.issn.1674-4888.2006.02.008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|