Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1175-1180    DOI: 10.3785/j.issn.1008-973X.2022.06.015
智能机器人     
基于模糊补偿的连续型空间机械臂预定时间控制
丁萌(),顾秀涛,郑先杰,郭毓*()
南京理工大学 自动化学院,江苏 南京 210094
Predefined-time control of continuum space manipulator based on fuzzy compensation
Meng DING(),Xiu-tao GU,Xian-jie ZHENG,Yu GUO*()
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(1183 KB)   HTML
摘要:

针对多节线驱连续型空间机械臂系统,在考虑存在外界时变干扰与参数不确定的情况下,提出基于模糊补偿的预定时间姿态控制方法. 设计模糊估计器估计系统切换增益,补偿未知有界总干扰. 基于预定时间稳定性理论,结合滑模控制,提出预定时间控制方法,使机械臂系统在预先设定时间内到达稳定状态. 与基于有限时间理论的控制方法相比,所提基于预定时间控制方法的稳定时间与系统初始状态无关,可以根据实际系统需求预先设置,并且所提方法在系统收敛速度与精度上具有更优的控制性能. 基于Lyapunov稳定性理论证明闭环系统的稳定性. 仿真结果表明,所提控制方法使系统姿态角误差快速收敛,并且预定时间稳定.

关键词: 线缆驱动连续型机械臂空间机械臂预定时间控制模糊控制    
Abstract:

For the multi-segment cable-driven continuum space manipulator system, a predefined-time attitude control method based on fuzzy compensation was proposed, considering the external time-varying disturbances and parameter uncertainties. A fuzzy estimator was designed to estimate the system switching gain and compensate the unknown bounded total disturbance. Based on the theory of predefined time stability, a sliding mode-based predefined-time control method was presented to make the manipulator system reach the stable state within a predefined time. Compared with the control method based on the finite-time theory, the settling time of the proposed control method was independent of the initial state of the system and was preset according to the actual system requirements. Furthermore, the proposed method had better control performance in terms of convergence rate and accuracy. Based on Lyapunov stability theory, the stability of the closed-loop system was proved. Simulation results show that the proposed control method can make the system attitude angle error converge fast and the predefined time stable.

Key words: cable-driven    continuum manipulator    space manipulator    predefined-time control    fuzzy control
收稿日期: 2022-03-15 出版日期: 2022-06-30
CLC:  TP 241  
基金资助: 国家自然科学基金资助项目(61973167);中国航天科技集团公司第八研究院产学研合作基金资助项目(SAST2020?062);江苏高校优势学科建设工程资助项目;江苏省研究生科研与实践创新计划项目(KYCX22_0455)
通讯作者: 郭毓     E-mail: 824355614@qq.com;guoyu@njust.edu.cn
作者简介: 丁萌(1996—),女,博士生,从事机器人控制方向的研究. orcid.org/0000-0003-4175-5736. E-mail: 824355614@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁萌
顾秀涛
郑先杰
郭毓

引用本文:

丁萌,顾秀涛,郑先杰,郭毓. 基于模糊补偿的连续型空间机械臂预定时间控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1175-1180.

Meng DING,Xiu-tao GU,Xian-jie ZHENG,Yu GUO. Predefined-time control of continuum space manipulator based on fuzzy compensation. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1175-1180.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.015        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1175

图 1  2节线驱动连续型机械臂示意图
图 2  第 n节机械臂几何模型
图 3  不同控制策略下的第1节机械臂姿态响应曲线
图 4  不同控制策略下的第2节机械臂姿态响应曲线
图 5  不同控制策略下的第1节机械臂姿态误差曲线
图 6  不同控制策略下的第2节机械臂姿态误差曲线
图 7  未知干扰上界估计曲线
1 MOGHADDAM B M, CHHABRA R On the guidance, navigation and control of in-orbit space robotic missions: a survey and prospective vision[J]. Acta Astronautica, 2021, 184: 70- 100
doi: 10.1016/j.actaastro.2021.03.029
2 OUYANG X, MENG D, WANG X, et al Hybrid rigid-continuum dual-arm space robots: modeling, coupling analysis, and coordinated motion planning[J]. Aerospace Science and Technology, 2021, 116: 106861
doi: 10.1016/j.ast.2021.106861
3 PALMER D, AXINTE D Active uncoiling and feeding of a continuum arm robot[J]. Robotics and Computer Integrated Manufacturing, 2019, 56: 107- 116
doi: 10.1016/j.rcim.2018.09.003
4 TONAPI M M, GODAGE I S, WALKER I D. Next generation rope-like robot for in-space inspection [C]// 2014 IEEE Aerospace Conference. Big Sky: IEEE, 2014: 1-13.
5 JIANG D, CAI Z, PENG H, et al Coordinated control based on reinforcement learning for dual-arm continuum manipulators in space capture missions[J]. Journal of Aerospace Engineering, 2021, 34 (6): 4021087
doi: 10.1061/(ASCE)AS.1943-5525.0001335
6 IVANESCU M, POPESCU D, POPESCU N A decoupled sliding mode control for a continuum arm[J]. Advanced Robotics, 2015, 29 (13): 831- 845
doi: 10.1080/01691864.2015.1035323
7 ALQUMSAN A A, KHOO S, NORTON M Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131: 48- 61
doi: 10.1016/j.mechmachtheory.2018.09.011
8 ALQUMSAN A A, KHOO S, NORTON M Multi-surface sliding mode control of continuum robots with mismatched uncertainties[J]. Meccanica, 2019, 54: 2307- 2316
doi: 10.1007/s11012-019-01072-6
9 QI P, LIU C, ATAKA A, et al Kinematic control of continuum manipulators using a fuzzy model-based approach[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (8): 5022- 5035
doi: 10.1109/TIE.2016.2554078
10 PILTAN F, KIM C H, KIM J Adaptive fuzzy-based fault-tolerant control of a continuum robotic system for maxillary sinus surgery[J]. Applied Sciences, 2019, 9 (12): 2490
doi: 10.3390/app9122490
11 ZHONG C, GUO Y, YU Z, et al Finite-time attitude control for flexible spacecraft with unknown bounded disturbance[J]. Transactions of the Institute of Measurement and Control, 2016, 38 (2): 240- 249
doi: 10.1177/0142331214566223
12 JIANG B, HU Q, FRISWELL M I Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24 (5): 1892- 1898
doi: 10.1109/TCST.2016.2519838
13 SÁNCHEZ-TORRES J D, DEFOORT M, MUÑOZ-VÁZQUEZ A J. A second order sliding mode controller with predefined-time convergence [C]// 15th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico City: IEEE, 2018: 1-4.
14 WANG F, MIAO Y, LI C, et al Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357 (7): 4212- 4221
doi: 10.1016/j.jfranklin.2020.01.001
15 SÁNCHEZ-TORRES J D, GÓMEZ-GUTIÉRREZ D, LÓPEZ E, et al A class of predefined-time stable dynamical systems[J]. IMA Journal of Mathematical Control and Information, 2018, 35: i1- i29
doi: 10.1093/imamci/dnx004
16 王坚强 模糊多准则决策方法研究综述[J]. 控制与决策, 2008, 6 (23): 601- 606
WANG Jian-qiang Overview on fuzzy multi-criteria decision-making approach[J]. Control and Decision, 2008, 6 (23): 601- 606
[1] 孟祥飞,王仁广,徐元利. 双行星排汽车纯电驱动模式的转矩分配策略[J]. 浙江大学学报(工学版), 2020, 54(11): 2214-2223.
[2] 谢宪毅, 金立生, 高琳琳, 夏海鹏. 基于变权重系数的LQR车辆后轮主动转向控制研究[J]. 浙江大学学报(工学版), 2018, 52(3): 446-452.
[3] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[4] 朱绍鹏,林鼎,谢博臻,俞小莉,韩松. 电动汽车驱动力分层控制策略[J]. 浙江大学学报(工学版), 2016, 50(11): 2094-2099.
[5] 胡健, 吴功平,王伟, 杨守东,刘明, 杨智勇, 何缘, 郭磊.
巡线机器人无动力下坡速度控制方法
[J]. 浙江大学学报(工学版), 2015, 49(10): 1878-1884.
[6] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[7] 唐昉,周晓军,魏燕定. 改善人-车综合性能的变传动比反馈方法[J]. J4, 2014, 48(3): 456-462.
[8] 王硕, 应济, 陈子辰, 冯宇. 精密注塑机保压压力的新型模糊自校正控制[J]. J4, 2011, 45(8): 1370-1375.
[9] 管成, 彭华. 基于非线性函数的注塑机注射压力模糊控制[J]. J4, 2011, 45(8): 1382-1386.
[10] 唐铁英 邱家驹 蒙文川. 免疫模糊算法在电网规划中的应用[J]. J4, 2008, 42(5): 815-819.
[11] 陆玲霞 汪雄海. 基于模糊控制的电磁水热系统研究[J]. J4, 2008, 42(4): 598-601.
[12] 吴乐彬 王宣银 李强. 对接模拟并联六自由度平台的模糊免疫PID控制[J]. J4, 2008, 42(3): 387-391.
[13] 冯晓露 覃来丰 岑可法. 基于遗传算法的模糊控制器动态优化方法[J]. J4, 2007, 41(3): 461-465.
[14] 孙多青 马晓英 俞百印 李霞. 带有鲁棒控制项的MIMO非线性系统的模糊控制[J]. J4, 2007, 41(10): 1620-1624.
[15] 吴晓峰 费敏锐. 基于支持向量机预报模型的烧结终点模糊控制[J]. J4, 2007, 41(10): 1722-1726.