Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1168-1174    DOI: 10.3785/j.issn.1008-973X.2022.06.014
智能机器人     
双臂空间机器人的固定时间轨迹跟踪控制
洪梦情(),丁萌,顾秀涛,郭毓*()
南京理工大学 自动化学院,江苏 南京 210094
Fixed time trajectory tracking control for dual-arm space robot
Meng-qing HONG(),Meng DING,Xiu-tao GU,Yu GUO*()
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(1174 KB)   HTML
摘要:

针对双臂空间机器人轨迹跟踪控制问题,考虑系统跟踪误差收敛时间易受初始状态影响,提出与初始状态无关的固定时间非奇异快速终端滑模控制策略. 基于固定时间稳定性理论,设计改进的固定时间非奇异快速终端滑模面. 该滑模面解决了终端滑模控制的奇异问题,使得系统跟踪误差在远离、接近原点时均有较快的收敛速度. 为了削弱滑模控制存在的抖振现象和提高趋近阶段的收敛速度,提出改进的固定时间趋近律,应用李雅普诺夫理论证明闭环系统的固定时间稳定. 以双臂空间机器人为被控对象进行对比仿真,结果表明,所提控制策略具有更高的控制精度、更快的收敛速度和更强的鲁棒性.

关键词: 双臂空间机器人轨迹跟踪固定时间收敛非奇异快速终端滑模收敛速度    
Abstract:

For the trajectory tracking problem of the dual-arm space robot, a fixed-time nonsingular fast terminal sliding mode control strategy which was independent of the initial states was proposed, considering the convergence time of the tracking error was easily affected by the initial states of the system. Firstly, based on fixed-time stability theory, an improved fixed-time nonsingular fast terminal sliding mode surface was designed, which not only solved the singularity problems in terminal sliding mode control, but also guaranteed fast convergence rate of the tracking error whether it was away from or close to the origin. In order to weaken the chattering phenomenon of the sliding mode control and improve the convergence rate of reaching phase, an improved fixed-time reaching law was proposed. The fixed-time stability of the closed-loop system was proved by Lyapunov theory. The dual-arm space robot was taken as the controlled object for comparative simulation, and the results confirmed the higher control accuracy, faster convergence rate and better robustness of the proposed control strategy.

Key words: dual-arm space robot    trajectory tracking    fixed-time convergence    nonsingular fast terminal sliding mode    convergence rate
收稿日期: 2022-03-11 出版日期: 2022-06-30
CLC:  TP 241  
基金资助: 国家自然科学基金资助项目(61973167,61773211);江苏省研究生科研与实践创新计划项目(KYCX21_0321)
通讯作者: 郭毓     E-mail: mqhong@njust.edu.cn;guoyu@njust.edu.cn
作者简介: 洪梦情(1996—),女,博士生,从事空间机器人协调控制研究. orcid.org/0000-0003-0781-3912. E-mail: mqhong@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
洪梦情
丁萌
顾秀涛
郭毓

引用本文:

洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.

Meng-qing HONG,Meng DING,Xiu-tao GU,Yu GUO. Fixed time trajectory tracking control for dual-arm space robot. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1168-1174.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.014        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1168

图 1  双臂空间机器人结构示意图
分体 $m$/ $ {\text{kg}} $ $l$/ $ {\text{m}} $ $I$/( $ {\text{kg}} \cdot {{\text{m}}^{\text{2}}} $)
${B_0}$ 40 1.5 34.17
${L_1}$ 2 3 1.50
${L_2}$ 1 3 0.75
${L_3}$ 2 3 1.50
${L_4}$ 1 3 0.75
表 1  双臂空间机器人质量特性参数
图 2  双臂空间机器人系统轨迹跟踪曲线
图 3  双臂空间机器人系统控制力矩
图 4  不同初始状态下跟踪误差收敛时间对比
图 5  不同固定时间控制律下跟踪误差收敛时间对比
1 WANG M, LUO J, WALTER U Trajectory planning of free-floating space robot using particle swarm optimization (PSO)[J]. Acta Astronautica, 2015, 112: 77- 88
doi: 10.1016/j.actaastro.2015.03.008
2 徐文福, 王学谦, 薛强, 等 保持基座稳定的双臂空间机器人轨迹规划研究[J]. 自动化学报, 2013, 39 (1): 69- 80
XU Wen-fu, WANG Xue-qian, XUE Qiang, et al Study on trajectory planning of dual-arm space robot keeping the base stabilized[J]. Acta Automatica Sinica, 2013, 39 (1): 69- 80
doi: 10.1016/S1874-1029(13)60008-7
3 YANG S, WEN H, JIN D Trajectory planning of dual-arm space robots for target capturing and base manoeuvring[J]. Acta Astronautica, 2019, 164: 142- 151
doi: 10.1016/j.actaastro.2019.08.004
4 闫磊. 双臂空间机器人系统等效建模及协调柔顺控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019: 31-35.
YAN Lei. Equivalent modelling and coordinated compliance control of dual-arm space robot [D]. Harbin: Harbin Institute of Technology, 2019: 31-35.
5 夏鹏程, 罗建军, 王明明 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制[J]. 力学学报, 2021, 53 (4): 1138- 1155
XIA Peng-cheng, LUO Jian-jun, WANG Ming-ming A roubst stabilization control for dual-arm space robot capturing tumbling target[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (4): 1138- 1155
doi: 10.6052/0459-1879-20-449
6 朱安, 陈力 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51 (4): 1156- 1169
ZHU An, CHEN Li Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (4): 1156- 1169
doi: 10.6052/0459-1879-18-407
7 SHI L, JAYAKODY H, KATUPITIYA J, et al Coordinated control of a dual-arm space robot: novel models and simulations for robotic control methods[J]. IEEE Robotics and Automation Magazine, 2018, 25 (4): 86- 95
doi: 10.1109/MRA.2018.2864717
8 YAN L, XU W, HU Z, et al Multi-objective configuration optimization for coordinated capture of dual-arm space robot[J]. Acta Astronautica, 2020, 167: 189- 200
doi: 10.1016/j.actaastro.2019.11.002
9 LIU H, TIAN X, WANG G, et al Finite-time H ∞ control for high-precision tracking in robotic manipulators using backstepping control [J]. IEEE Transactions on Industrial Electronics, 2016, 63 (9): 5501- 5513
doi: 10.1109/TIE.2016.2583998
10 SHEN D, TANG L, HU Q, et al Space manipulator trajectory tracking based on recursive decentralized finite-time control[J]. Aerospace Science and Technology, 2020, 102: 105870
doi: 10.1016/j.ast.2020.105870
11 POLYAKOV A Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57 (8): 2106- 2110
doi: 10.1109/TAC.2011.2179869
12 ZHANG J, YU S, YAN Y, et al Fixed-time output feedback sliding mode tracking control of marine surface vessels under actuator faults with disturbance cancellation[J]. Applied Ocean Research, 2020, 104: 102378
doi: 10.1016/j.apor.2020.102378
13 ZUO Z Non-singular fixed-time terminal sliding mode control of non-linear systems[J]. IET Control Theory and Applications, 2015, 9 (4): 545- 552
doi: 10.1049/iet-cta.2014.0202
14 NI J, LIU L, LIU C, et al Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64 (2): 151- 155
doi: 10.1109/TCSII.2016.2551539
15 黄登峰, 陈力 漂浮基双臂空间机器人系统协调运动的模糊小波神经网络控制[J]. 中国机械工程, 2011, 22 (13): 1591- 1596
HUANG Deng-feng, CHEN Li Fuzzy wavelet neural network control for coordinated motion of a free-floating dual-arm space robot[J]. China Mechanical Engineering, 2011, 22 (13): 1591- 1596
16 JIANG B, HU Q, FRISWELL M Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24 (5): 1892- 1898
doi: 10.1109/TCST.2016.2519838
17 WANG Y, ZHU K, YAN F, et al Adaptive super-twisting nonsingular fast terminal sliding mode control for cable-driven manipulators using time-delay estimation[J]. Advances in Engineering Software, 2019, 128: 113- 124
doi: 10.1016/j.advengsoft.2018.11.006
18 田野, 蔡远利, 邓逸凡 一种快速收敛的固定时间非奇异终端滑模控制方法[J]. 中国惯性技术学报, 2020, 28 (5): 677- 685
TIAN Ye, CAI Yuan-li, DENG Yi-fan A fast-nonsingular terminal sliding mode control method with fixed-time stability guarantees[J]. Journal of Chinese Inertial Technology, 2020, 28 (5): 677- 685
[1] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[2] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[3] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[4] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[5] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[6] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[7] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[8] 王友卫, 凤丽洲. 基于双子群和分区采样的果蝇优化新算法[J]. 浙江大学学报(工学版), 2017, 51(11): 2292-2298.
[9] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[10] 帅鑫, 李艳君, 吴铁军. 一种柔性机械臂末端轨迹跟踪的预测控制算法[J]. J4, 2010, 44(2): 259-264.
[11] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[12] 陈少斌, 蒋静坪. 四轮移动机器人轨迹跟踪的最优状态反馈控制[J]. J4, 2009, 43(12): 2186-2190.