计算机技术、信息工程 |
|
|
|
|
基于压电薄膜传感器的机器人触觉识别系统 |
王云灏1(),孙铭会1,*(),辛毅2,张博宣3() |
1. 吉林大学 计算机科学与技术学院,吉林 长春 130012 2. 吉林大学 仪器科学与电气工程学院,吉林 长春 130061 3. 美国波特兰州立大学 工程与计算机科学学院,俄勒冈州 波特兰 97201 |
|
Robot tactile recognition system based on piezoelectric film sensor |
Yun-hao WANG1(),Ming-hui SUN1,*(),Yi XIN2,Bo-xuan ZHANG3() |
1. College of Computer Science and Technology, Jilin University, Changchun 130012, China 2. College of Instrument Science and Electrical Engineering, Jilin University, Changchun 130061, China 3. College of Engineering and Computer Science, Portland State University, Portland 97201, USA |
引用本文:
王云灏,孙铭会,辛毅,张博宣. 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报(工学版), 2022, 56(4): 702-710.
Yun-hao WANG,Ming-hui SUN,Yi XIN,Bo-xuan ZHANG. Robot tactile recognition system based on piezoelectric film sensor. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 702-710.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.009
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I4/702
|
1 |
ALATISE M B, HANCKE G P A review on challenges of autonomous mobile robot and sensor fusion methods[J]. IEEE Access, 2020, 8 (1): 39830- 39846
|
2 |
LIU L, XU Y, ZHU J, et al A flexible thermal sensor based on PVDF film for robot finger skin[J]. Integrated Ferroelectrics, 2019, 201 (1): 23- 31
doi: 10.1080/10584587.2019.1668687
|
3 |
EGUíLUZ A G, RA?ó I, COLEMAN S A, et al Multimodal material identification through recursive tactile sensing[J]. Robotics and Autonomous Systems, 2018, 106: 130- 139
doi: 10.1016/j.robot.2018.05.003
|
4 |
YANG Y J, CHENG M Y, SHIH S C, et al A 32×32 temperature and tactile sensing array using PI-copper films[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46 (9-12): 945- 956
doi: 10.1007/s00170-009-1940-z
|
5 |
HERSHEY S, CHAUDHURI S, ELLIS D P W, et al. CNN architectures for large-scale audio classification [C]// 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans: IEEE, 2017: 131-135.
|
6 |
WU H, CHEN J, LIU X, et al One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019, 37 (17): 4359- 4366
doi: 10.1109/JLT.2019.2923839
|
7 |
JANA G C, SHARMA R, AGRAWAL A A 1D-CNN-spectrogram based approach for seizure detection from EEG signal[J]. Procedia Computer Science, 2020, 167 (1): 403- 412
|
8 |
INCE T, KIRANYAZ S, EREN L, et al Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (11): 7067- 7075
doi: 10.1109/TIE.2016.2582729
|
9 |
ACQUARELLI J, VAN LAARHOVEN T, GERRETZEN J, et al Convolutional neural networks for vibrational spectroscopic data analysis[J]. Analytica Chimica Acta, 2017, 954 (1): 22- 31
|
10 |
VIJAYA ARJUNAN R. ECG signal classification based on statistical features with SVM classification [J]. International Journal of Advances in Signal and Image Sciences, 2016, 2(1): 5-10.
|
11 |
RAMÓN M M, ATWOOD T, BARBIN S, et al. Signal classification with an SVM-FFT approach for feature extraction in cognitive radio [C]// IEEE MTT-S International Microwave and Optoelectronics Conference. Belem: IEEE, 2009: 286-289.
|
12 |
SOMAN S High performance EEG signal classification using classifiability and the Twin SVM[J]. Applied Soft Computing, 2015, 30 (1): 305- 318
|
13 |
RICHHARIYA B, TANVEER M EEG signal classification using universum support vector machine[J]. Expert Systems with Applications, 2018, 106 (1): 169- 182
|
14 |
LI Y, WEN P P Clustering technique-based least square support vector machine for EEG signal classification[J]. Computer Methods and Programs in Biomedicine, 2011, 104 (3): 358- 372
doi: 10.1016/j.cmpb.2010.11.014
|
15 |
YANG Z, ZHAO Q, LIU W Neural signal classification using a simplified feature set with nonparametric clustering[J]. Neurocomputing, 2009, 73 (1-3): 412- 422
doi: 10.1016/j.neucom.2009.07.013
|
16 |
LECUN Y, BOTTOU L, BENGIO Y, et al Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324
doi: 10.1109/5.726791
|
17 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (1): 1097- 1105
|
18 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
19 |
OKAMOTO S, NAGANO H, YAMADA Y Psychophysical dimensions of tactile perception of textures[J]. IEEE Transactions on Haptics, 2012, 6 (1): 81- 93
|
20 |
MALEK S, MELGANI F, BAZI Y One-dimensional convolutional neural networks for spectroscopic signal regression[J]. Journal of Chemometrics, 2018, 32 (5): e2977
doi: 10.1002/cem.2977
|
21 |
ULLAH A, ANWAR S M, BILAL M, et al Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation[J]. Remote Sensing, 2020, 12 (10): 1685
doi: 10.3390/rs12101685
|
22 |
LIAO T W Clustering of time series data: a survey[J]. Pattern Recognition, 2005, 38 (11): 1857- 1874
doi: 10.1016/j.patcog.2005.01.025
|
23 |
LOTFI A, LANGENSIEPEN C, MAHMOUD S M, et al Smart homes for the elderly dementia sufferers: identification and prediction of abnormal behavior[J]. Journal of Ambient Intelligence and Humanized Computing, 2012, 3 (3): 205- 218
doi: 10.1007/s12652-010-0043-x
|
24 |
SCH?FER P The BOSS is concerned with time series classification in the presence of noise[J]. Data Mining and Knowledge Discovery, 2015, 29 (6): 1505- 1530
doi: 10.1007/s10618-014-0377-7
|
25 |
LI T, WU X, ZHANG J Time series clustering model based on DTW for classifying car parks[J]. Algorithms, 2020, 13 (3): 57
doi: 10.3390/a13030057
|
26 |
KESKIN C, CEMGIL A T, AKARUN L. DTW based clustering to improve hand gesture recognition [C]// International Workshop on Human Behavior Understanding. Heidelberg: Springer, 2011: 72-81.
|
27 |
MA R, ANGRYK R. Distance and density clustering for time series data [C]// 2017 IEEE International Conference on Data Mining Workshops. New Orleans: IEEE, 2017: 25-32.
|
28 |
DE BOER P T, KROESE D P, MANNOR S, et al A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134 (1): 19- 67
doi: 10.1007/s10479-005-5724-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|