Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2207-2214    DOI: 10.3785/j.issn.1008-973X.2021.11.022
电气工程     
反射式小型光学电场传感器
林飞宏1(),周吉1,张建培2,杨国华2,杨青1,3,*()
1. 浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室,教育部光子学与技术国际合作联合实验室,浙江 杭州 310027
2. 四川中光防雷技术有限公司,四川 成都 611731
3. 山西大学 极端光学协同创新中心,山西 太原 030006
Reflective miniature optical electric field sensor
Fei-hong LIN1(),Ji ZHOU1,Jian-pei ZHANG2,Guo-hua YANG2,Qing YANG1,3,*()
1. State Key Laboratory of Modern Optical Instrumentation, Joint International Research Laboratory of Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. Sichuan Zhongguang Lightning Protection Technologies Limited Company, Chengdu 611731, China
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(1158 KB)   HTML
摘要:

为了同时实现对直流电场、交变电场和瞬态电场的测量,通过琼斯矩阵计算,建立基于泡克尔效应的反射式光学电场传感探头的理论传感模型,分析铌酸锂晶体长度、晶体切型、温度以及封装应力对探头传感性能的影响. 制备尺寸Φ5 mm×80 mm,理论电场测量范围为±439.2 kV/m的反射式小型光学电场传感探头,搭建相关的电场传感系统并表征传感探头在10~5000 Hz交变电场、直流场、8.2~12.4 GHz高频微波场下的传感性能. 实验结果表明,该光学电场传感器在直流?12.4 GHz电场频率范围内具有较好的电场响应,在无外加电场时长时间内信号漂移量小于0.08‰,分辨力至少为3 V/m,实际可测量范围为10?3~102 kV/m,有望应用于高功率微波探测和电力系统领域的直流、ms级及ns级暂态电场监测.

关键词: 小型光学电场传感器泡克尔效应铌酸锂(LN)晶体电场测量反射式    
Abstract:

The theoretical sensing model of reflective optical electric field sensor based on the Pockels effect was established based on the calculation of Jones matrix, in order to measure the direct current, alternating and transient electric field. The effects of lithium niobate crystal length, crystal cutting type, temperature and external applied stress on the sensing performance of the probe were analyzed. A reflective miniature optical electric field sensor probe, with the size of Φ5 mm×80 mm and the theoretical measurement range of ±439.2 kV/m, was prepared. A sensing system was built to characterize the probe under 10~5000 Hz alternating, direct current and 8.2 GHz to 12.4 GHz high frequency microwave electric field. Results show that the probe performs well in response to electric field in the frequency range of DC-12.4 GHz, with long-time signal drifting no more than 0.08‰, the resolution for at least 3 V/m, and the actual measurement range for 10?3 kV/m to 102 kV/m. This optical electric field sensor can be practical for DC, ms and ns transient electric field monitoring in high-power microwave detection and power systems.

Key words: miniature optical electric field sensor    Pockels effect    lithium niobate (LN) crystal    electric field measurement    reflection-type
收稿日期: 2020-12-23 出版日期: 2021-11-05
CLC:  TN 29  
基金资助: 国家自然科学基金资助项目(61822510,61822510,61735017);浙江省自然科学基金资助项目(R17F050003)
通讯作者: 杨青     E-mail: linfeihong@zju.edu.cn;qingyang@zju.edu.cn
作者简介: 林飞宏(1996—),女,博士生,从事光学传感技术与微波光子学研究. orcid.org/0000-0003-3551-5568. E-mail: linfeihong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林飞宏
周吉
张建培
杨国华
杨青

引用本文:

林飞宏,周吉,张建培,杨国华,杨青. 反射式小型光学电场传感器[J]. 浙江大学学报(工学版), 2021, 55(11): 2207-2214.

Fei-hong LIN,Ji ZHOU,Jian-pei ZHANG,Guo-hua YANG,Qing YANG. Reflective miniature optical electric field sensor. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2207-2214.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.022        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2207

图 1  探头理论传感模型
图 2  Z(X)切型铌酸锂晶体传感性能分析
图 3  交变电场试验装置
图 4  方波信号波形图
图 5  探头在不同频率下的测量幅值-电场强度曲线
图 6  直流电场测试结果
图 7  高频微波场试验装置
图 8  高频微波场试验结果
1 BRENDEL V M, BUKIN V V, GARNOV S V, et al. Laser driven ultra-wideband microwave pulse generetor numerical simulation [C]// 2014 International Conference Laser Optics. St. Petersburg : IEEE, 2014.
2 王伟, 朱志臻, 聂鑫, 等 一种高空核电磁脉冲磁场测量技术[J]. 电波科学学报, 2019, 34 (3): 347- 354
WANG Wei, ZHU Zhi-zhen, NIE Xin, et al A magnetic field measurement technology of high altitude electromagnetic pulse[J]. Chinese Journal of Radio Science, 2019, 34 (3): 347- 354
3 罗福山 肯尼迪航天中心的雷电防护系统[J]. 世界导弹与航天, 1991, 5 (3): 45- 48
LUO Fu-shan Lightning protection system at the Kennedy Space Center[J]. Missiles and Spacecraft, 1991, 5 (3): 45- 48
4 罗福山 雷击飞行器事件与美国航天活动的发射规范[J]. 中国航天, 1993, (1): 27- 29
LUO Fu-shan Lightning strike incident and Launch specifications for U.S. space activities[J]. Aerospace China, 1993, (1): 27- 29
5 SALTZER M, KALLSTRAND B, JOHANSSON K, et al. DC field measurement around a cable end [C]// 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Chenzhen: IEEE, 2013: 262-265.
6 张星, 白强, 夏善红, 等 新型三维电场传感器原理及试验结果[J]. 电子器件, 2006, 29 (1): 118- 120
ZHANG Xing, BAI Qiang, XIA Shan-hong, et al Principle of a novel three dimension electric field sensor and its test result[J]. Chinese Journal Of Electron Devices, 2006, 29 (1): 118- 120
doi: 10.3969/j.issn.1005-9490.2006.01.033
7 WIJEWEERA G, SHAFAI C, RAJAPAKSE A. Measuring power system voltage remotely using micromachined electric field sensor [C]// 2008 1st Microsystems and Nanoelectronics Research Conference. Ottawa: IEEE, 2008: 209-212.
8 BAUM C E, BREEN E L, GILES J C, et al Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions[J]. IEEE Transactions on Antennas and Propagation, 1978, 20 (1): 22- 35
9 MANN W, PETENMANN K Miniaturized electro-optical e-field probe with high sensitivity and optical power supply[J]. Electronics Letters, 2002, 38 (10): 455- 456
doi: 10.1049/el:20020310
10 CASSIDY E C, CONES H N, BOOKER S R Development and evaluation of electrooptical high-voltage pulse measurement techniques[J]. IEEE Transactions on Instrumentation and Measurement, 1970, 19 (4): 395- 402
doi: 10.1109/TIM.1970.4313935
11 IHORI H, UJIKE M, HIROMOTO K, et al Time series measurements of electric field vector mapping in a dielectric liquid[J]. Japanese Journal of Applied Physics, 2002, 41 (78): 861- 863
12 JUNG H Electro-optical electric field sensors utilizing Ti: LiNbO3 1×2 directional coupler with dipole antennas [J]. Optical Engineering, 2013, 52 (6): 064402
doi: 10.1117/1.OE.52.6.064402
13 CHRISTENSEN L H Design, construction, and test of a passive optical prototype high voltage instrument transformer[J]. IEEE Transactions on Power Delivery, 1995, 10 (3): 1332- 1337
doi: 10.1109/61.400913
14 TAN Q, XU Q F, CHEN L Y, et al A new method to improve internal electric field distributions of pockels OVS[J]. IEEE Sensors Journal, 2017, 17 (13): 4115- 4121
doi: 10.1109/JSEN.2017.2703600
15 DENG W, LI H, ZHANG C X, et al Optimization of detection accuracy of closed-loop optical voltage sensors based on Pockels effect[J]. Sensors, 2017, 17 (8): 1723
doi: 10.3390/s17081723
16 李长胜, 崔翔, 李宝树, 等 光纤电压传感器研究综述[J]. 高电压技术, 2000, 26 (2): 40- 43
LI Chang-sheng, CUI Xiang, LI Bao-shu, et al A review of optical potential transducers[J]. High Voltage Engineering, 2000, 26 (2): 40- 43
doi: 10.3969/j.issn.1003-6520.2000.02.015
17 CECELJA F, BALACHANDRAN W Compensation of environmental effects in bulk optical sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51 (4): 866- 869
doi: 10.1109/TIM.2002.803512
18 CECELJA F, BALACHANDRAN W, BORDOWSKI M Validation of electro-optic sensors for measurement of DC fields in the presence of space charge[J]. Measurement, 2007, 40 (4): 450- 458
doi: 10.1016/j.measurement.2006.06.003
19 徐敬舆, 陈益新 X切铌酸锂(LiNbO3)晶体Z方向传播声表面波特性研究及参数测定 [J]. 上海交通大学学报, 1983, (2): 99- 110
XU Jing-yu, CHEN Yi-xin Characteristics of Z-propagating acoustic surface waves on X-cut LiNbO3 and measurement of related parameters [J]. Journal of Shanghai Jiaotong University, 1983, (2): 99- 110
20 GORMAN T, HAXHA S Full-wave comparison of Z-cut and X-cut lithium Niobate (LiNbO3) electrooptic modulators using finite element method [J]. Lecture Notes in Engineering and Computer Science, 2007, 2165 (1): 459- 464
21 PAN F, XIAO X, XU Y, et al An optical AC voltage sensor based on the transverse Pockels effect[J]. Sensors, 2011, 11 (7): 6593- 6602
doi: 10.3390/s110706593
22 HIDAKA K, KOUNO T, HAYASHI I Simultaneous measurement of two orthogonal components of electric field using a Pockels device[J]. Review of Scientific Instruments, 1989, 60 (7): 1252- 1257
doi: 10.1063/1.1140299
23 CECELJA F, BORDOVSKY M, BALACHANDRAN W Electro-optic sensor for measurement of DC fields in the presence of space charge[J]. Measurement, 2002, 51 (2): 282- 286
24 薄锋, 朱健强, 康俊 波片相位延迟的精确测量及影响因素分析[J]. 中国激光, 2007, 34 (6): 851- 856
BO Feng, ZHU Jian-qiang, KANG Jun Precise measurement and factors analysis for phase retardation of wave plate[J]. Chinese Journal of Lasers, 2007, 34 (6): 851- 856
doi: 10.3321/j.issn:0258-7025.2007.06.024
25 SHE W L, LEE W K Wave coupling theory of linear electrooptic effect[J]. Optics Communicant, 2001, 195 (1): 303- 311
26 DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook of nonlinear optical crystals [M]. 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg GmbH, 2001.
27 WONG K K. Properties of lithium niobate [M]. London: The Institution of Electrical Engineers, 2002.
28 陈海波, 佘卫龙 电光调制器的温度特性及其最优化设计[J]. 光学学报, 2004, (10): 59- 63
CHEN Hai-bo, SHE Wei-long Temperature dependence of electrooptic modulator and its optimal design[J]. Acta Optica Sinica, 2004, (10): 59- 63
[1] 王小磊 刘向东 张懿 曹星烨 刘旭. 基于微镜阵列器件的反射式空间光调制器[J]. J4, 2008, 42(10): 1735-1738.