Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1225-1233    DOI: 10.3785/j.issn.1008-973X.2021.07.001
机械工程     
基于扩张状态观测器估计的混合动力汽车协调控制
汪佳佳(),蔡英凤*(),陈龙,汪少华,施德华
江苏大学 汽车工程研究院,江苏 镇江 212013
Coordinated control of hybrid electric vehicle based on extended state observer estimation
Jia-jia WANG(),Ying-feng CAI*(),Long CHEN,Shao-hua WANG,De-hua SHI
Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(1253 KB)   HTML
摘要:

为了提高功率分流式混合动力汽车模式切换的稳定性,提出干扰补偿的转矩协调控制策略. 针对发动机动态响应振荡及车辆行驶工况多变的问题,设计多变量线性扩张状态观测器,从频域角度验证了观测器对于上述2种干扰的估计精确性. 研究不同干扰对基础电机补偿控制稳定性的影响,指出负载干扰对车辆模式切换响应的影响最大,引起的切换冲击最大可至24.5 m/s3. 提出基于干扰补偿的动力源转矩再分配算法,开展仿真验证. 结果表明,该协调控制策略在受到明显的外界干扰时能够保证系统的稳定性及模式切换的平顺性.

关键词: 混合动力汽车(HEV)模式切换扩张状态观测器外界干扰稳定性    
Abstract:

A torque coordinated control strategy based on disturbances compensation was proposed in order to improve the mode switching stability of power-split hybrid electric vehicles. A multi-variable linear extended state observer was designed aiming at the problem of engine dynamic response oscillation and vehicle driving condition variation. Then its estimation accuracy of the above disturbances was verified from the frequency domain perspective. The influence law of different disturbances on the stability of basic motor compensation control was analyzed. The load disturbance has a greater influence on the vehicle mode switching response, and the peak value of the switching jerk can reach 24.5 m/s3. The coordinated control strategy of power sources torque redistribution algorithm based on disturbances compensation was proposed and verified by simulation. Results show that the control strategy can guarantee the system stability and smoothness of mode switching under the obvious interference.

Key words: hybrid electric vehicle (HEV)    mode switching    extended state observer    external disturbance    stability
收稿日期: 2020-06-08 出版日期: 2021-07-05
CLC:  U 463  
基金资助: 国家自然科学基金资助项目(U1764257,51905219);江苏省重点研发计划资助项目(BE2016149);江苏省自然科学基金青年基金资助项目(BK20190844);江苏省高等学校自然科学研究资助项目(19KJB580001)
通讯作者: 蔡英凤     E-mail: wjj751772554@163.com;caicaixiao0304@126.com
作者简介: 汪佳佳(1992—),女,博士生,从事混合动力汽车动态协调控制的研究. orcid.org/0000-0002-5374-5570. E-mail: wjj751772554@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汪佳佳
蔡英凤
陈龙
汪少华
施德华

引用本文:

汪佳佳,蔡英凤,陈龙,汪少华,施德华. 基于扩张状态观测器估计的混合动力汽车协调控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1225-1233.

Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.001        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1225

图 1  双行星排式功率分流系统
工作模式 发动机 MG1 MG2 B1 说明
纯电动 锁止 车速较低,负荷较低,且SOC较大
混合驱动 锁止 整车负荷持续增加或SOC低
表 1  典型的工作模式
图 2  双行星排杠杆模型
图 3  整车模式切换响应仿真与试验对比图
参数 数值
发动机 最大功率(转速) 54 kW(4 700 r/min)
发动机 最大扭矩 115 N·m
电机MG1 最大功率(转速) 15 kW(8 000 r/min)
电机MG1 最大扭矩 55 N·m
电机MG2 最大功率(转速) 30 kW(12 000 r/min)
电机MG2 最大扭矩 305 N·m
动力电池 容量 6.5 A·h
动力电池 额定电压 288 V
行星轮系特征参数 前排PG1 1.842
行星轮系特征参数 后排PG2 2.48
整车 满载质量 1 398 kg
整车 迎风面积 1.746 m2
整车 空气阻力系数 0.3
整车 滚动阻力系数 0.008
整车 滚动半径Rt 0.287 m
整车 主减速器速比io 3.93
整车 kp1/ki1 0.025/0.015
整车 kp2/ki2 0.5/0.000 1
表 2  整车关键部件参数
图 4  混合动力汽车模式切换控制框图
图 5  发动机冷起动阻力矩
图 6  发动机转矩干扰下2种协调控制效果的对比
图 7  输出端负载干扰下2种协调控制效果的对比
1 施德华, 蔡英凤, 汪少华, 等 系统效率最优的功率分流式混合动力汽车非线性预测控制[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2271- 2279
SHI De-hua, CAI Ying-feng, WANG Shao-hua, et al Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2271- 2279
2 GEETHA A, SUBRAMANI C A comprehensive review on energy management strategies of hybrid energy storage system for electric vehicles[J]. International Journal of Energy Research, 2017, 41 (4): 1817- 1834
3 KOPRUBASI K, WESTERVELT E R, RIZZONI G. Toward the systematic design of controllers for smooth hybrid electric vehicle mode changes[C]// Proceedings of 2007 America Control Conference. New York: IEEE, 2007: 2985-2990.
4 温博轩, 王伟达, 项昌乐, 等 混联式混合动力系统动态响应协调控制[J]. 哈尔滨工业大学学报, 2016, 48 (1): 72- 79
WEN Bo-xuan, WANG Wei-da, XIANG Chang-le, et al Torque coordinated control for the multi-power in parallel-series HEV[J]. Journal of Harbin Institute of Technology, 2016, 48 (1): 72- 79
doi: 10.11918/j.issn.0367-6234.2016.01.011
5 童毅. 并联式混合动力系统动态协调控制问题的研究[D]. 北京: 清华大学, 2004.
TONG Yi. Study on the coordinated control issue in parallel hybrid electric system[D]. Beijing: Tsinghua University, 2004.
6 YOSHIOK A. Noise and vibration reduction technology in hybrid vehicle development[C]// SAE Paper. Traverse City: SAE, 2001: 2001-01-1415.
7 HUANG K, XIANG C, MA Y, et al Mode shift control for a hybrid heavy-duty vehicle with power-split transmission[J]. Energies, 2017, 10 (2): 177
doi: 10.3390/en10020177
8 ZHU F, CHEN L, YIN C, et al Dynamic modelling and systematic control during the mode transition for a multi-mode hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2013, 227 (7): 1007- 1023
doi: 10.1177/0954407013477027
9 MA Y, HUANG K, XIANG C, et al. A control strategy to reduce torque variation for dual-mode power-split hybrid electric vehile during mode shift[C]// International Conference on Modeling, Identification and Control. Sousse: IEEE, 2016: 1-8.
10 LIN Y, QIN D, LIU Y, et al Control strategy for all the mode-switches of hybrid electric vehicle[J]. Advances in Mechanical Engineering, 2016, 8 (11): 1- 17
11 SUN J, XING G, LIU X, et al A novel torque coordination control strategy of a single-shaft parallel hybrid electric vehicle based on model predictive control[J]. Mathematical Problems in Engineering, 2015, (1): 1- 12
12 CHIANG C J, CHEN Y C, LIN C Y. Fuzzy sliding mode control for smooth mode changes of a parallel hybrid electric vehicle[C]// IEEE International Conference on Control and Automation. Taichung: IEEE, 2014: 1072-1077.
13 SU Y, HU M, SU L, et al Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 107: 221- 240
doi: 10.1016/j.ymssp.2018.01.023
14 杜波, 秦大同, 段志辉 HEV多领域物理建模与模式切换控制仿真[J]. 系统仿真学报, 2013, 25 (7): 1668- 1674
DU Bo, QIN Da-tong, DUAN Zhi-hui Multi-domain physical modeling and mode switching control simulation of HEV[J]. Journal of System Simulation, 2013, 25 (7): 1668- 1674
15 DU B, YIN X F, YANG Y Robust control of mode transition for a single-motor full hybrid electric vehicle[J]. Advances in Mechanical Engineering, 2017, 9 (9): 1- 16
16 温博轩, 王伟达, 项昌乐, 等 机电复合传动系统基于μ-综合方法的鲁棒协调控制[J]. 机械工程学报, 2017, 53 (14): 88- 97
WEN Bo-xuan, WANG Wei-da, XIANG Chang-le, et al Coordination control based on μ-synthesize for electro-mechanical transmission[J]. Journal of Mechanical Engineering, 2017, 53 (14): 88- 97
doi: 10.3901/JME.2017.14.088
17 LIVSHIZ M, KAO M, WILL A. Engine torque control variation and analysis[EB/OL]. (2008-04-14). https://doi.org/10.4271/2008-01-1016.
18 CHEN L, XI G, SUN J Torque coordination control during mode transition for a series–parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (7): 2936- 2949
doi: 10.1109/TVT.2012.2200305
19 李天云, 朱建华, 刘智铭, 等 基于李雅普诺夫函数法的扩张状态观测器参数优化[J]. 哈尔滨理工大学学报, 2012, 17 (1): 50- 53
LI Tian-yun, ZHU Jian-hua, LIU Zhi-ming, et al Parameter optimization of extended state observer based on Lyapunov function method[J]. Journal of Harbin University of Science and Technology, 2012, 17 (1): 50- 53
doi: 10.3969/j.issn.1007-2683.2012.01.011
20 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
21 李宗俐. 基于干扰观测器的模型预测控制器设计与实现[D]. 长春: 吉林大学, 2018.
LI Zong-li. The design and realization of the model predictive controller based on disturbance observer[D]. Changchun: Jilin University, 2018.
22 赵治国, 蒋蓝星, 李蒙娜, 等 基于参考模型的复合功率分流系统模式切换中的转矩协调控制[J]. 汽车工程, 2018, 40 (10): 1132- 1138
ZHAO Zhi-guo, JIANG Lan-xing, LI Meng-na, et al Torque coordinated control during mode switching of a compound power-split hybrid system based on reference model[J]. Automotive Engineering, 2018, 40 (10): 1132- 1138
23 李海晓. 基于鲁棒控制理论的HEV模式切换协调控制策略[D]. 洛阳: 河南科技大学, 2018.
LI Hai-xiao. Mode switching coordinated control strategy of HEV based on robust control theory[D]. Luoyang: Henan University of Science and Technology, 2018.
[1] 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测[J]. 浙江大学学报(工学版), 2022, 56(4): 692-701.
[2] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[3] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[4] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[5] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[6] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[7] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[8] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[9] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[10] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[11] 夏超英,吴刚,于佳丽. 基于一致渐近稳定观测器的模块化多电平变流器控制系统设计[J]. 浙江大学学报(工学版), 2019, 53(11): 2238-2247.
[12] 朱谢联,董石麟. 六杆四面体双曲面冷却塔网壳的构形、静力与稳定性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1907-1915.
[13] 支旭东,郭梦慧,王臣,武启剑. 泡沫混凝土填充圆钢管的轴压力学性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1927-1935.
[14] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[15] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.