Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1927-1935    DOI: 10.3785/j.issn.1008-973X.2019.10.010
土木工程     
泡沫混凝土填充圆钢管的轴压力学性能
支旭东1,2(),郭梦慧1,2(),王臣1,2,武启剑1,2
1. 哈尔滨工业大学 结构工程灾变与控制教育部重点实验室,黑龙江 哈尔滨 150090
2. 哈尔滨工业大学 土木工程智能防灾减灾工信部重点实验室,黑龙江 哈尔滨 150090
Mechanical properties of circular steel tube filled withfoam concrete under axial loads
Xu-dong ZHI1,2(),Meng-hui GUO1,2(),Chen WANG1,2,Qi-jian WU1,2
1. Key Laboratory of Structural Engineering Disaster Control of Education Ministry, Harbin Institute of Technology, Harbin 150090, China
2. Key Laboratory of Civil Engineering Intelligent Disaster Prevention and Mitigation Control of Ministry of Industry and Information, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(3259 KB)   HTML
摘要:

采用试验和有限元模拟方法,研究泡沫混凝土填充圆钢管构件在轴压荷载作用下的力学性能. 通过轴压试验,分析短柱构件的耗能能力和长柱构件的轴压承载力,短柱构件发生叠缩破坏变形模式,耗能能力随着泡沫混凝土密度的提高而显著增强,长柱构件发生整体失稳破坏,稳定承载力随着泡沫混凝土密度的增大而增大. 基于ABAQUS的Explicit求解器,建立泡沫混凝土填充圆钢管构件的数值模型,获得的模拟结果与试验结果吻合良好. 开展参数分析,讨论径厚比、长细比及填充泡沫混凝土密度等因素对长柱构件承载能力的影响. 研究结果表明:长柱构件的稳定承载力随着长细比和径厚比的增大而减小,随着填充的泡沫混凝土密度的增大而增大. 基于Perry-Robertson公式,推导了泡沫混凝土填充圆钢管长柱构件的稳定承载力公式. 预测结果表明,该公式能够很好地预测长柱构件的稳定承载力.

关键词: 泡沫混凝土圆钢管轴压稳定性Perry-Robertson    
Abstract:

The mechanical property of circular steel tube filled with foam concrete under axially compressive loads was analyzed with both experimental and numerical methods. The energy dissipation capacity of short column members and the axial load bearing capacity of long column members were analyzed by axial compressive experiments. Results showed that short column members failed with progressive folding and energy dissipation increased with the increase of foam concrete density. In the case of long column members, the overall instability failure occured, and the stable bearing capacity increased with the increase of foam concrete density. A numerical model based on ABAQUS Explicit solver was proposed, and the simulation results agreed well with the experimental results. The effects of foam concrete density, diameter-to-thickness ratio and slenderness ratio to specimen’s bearing capacity were analyzed. Results showed that the bearing capacity of long column members decreased with the increase of the diameter-to-thickness ratio and slenderness ratio, while increased with the increase of density of the filled foam concrete. A formula of stability capacity of long column members was derived based on the Perry-Robertson formula. The calculation results of the formula show that this formula can predict the axial load bearing capacity of long column members well.

Key words: foam concrete    circular steel tube    axial loaded    stability    Perry-Robertson
收稿日期: 2018-08-28 出版日期: 2019-09-30
CLC:  TU 323  
作者简介: 支旭东(1977—),男,教授,博导,从事大跨空间结构的研究. orcid.org/0000-0002-4750-5642. E-mail: zhixudong@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
支旭东
郭梦慧
王臣
武启剑

引用本文:

支旭东,郭梦慧,王臣,武启剑. 泡沫混凝土填充圆钢管的轴压力学性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1927-1935.

Xu-dong ZHI,Meng-hui GUO,Chen WANG,Qi-jian WU. Mechanical properties of circular steel tube filled withfoam concrete under axial loads. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1927-1935.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.010        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1927

ρ/(kg·m?3) m(水泥)/g m(水)/g m(泡沫)/g m(减水剂)/g
500 2 500 475 92.96 15
900 3 500 666.67 80.11 22.22
表 1  泡沫混凝土配合比
图 1  泡沫混凝土填充圆钢管截面
编号 ρ/(kg·m?3) D/t λ
FS1-100-500 500 58 ?
FS1-100-900 900 58 ?
FS2-100-500 500 29 ?
FS2-100-900 900 29 ?
FS1-900-500 500 58 44.65
FS1-900-900 900 58 44.65
FS1-1200-500 500 58 59.54
FS1-1200-900 900 58 59.54
FS2-900-500 500 29 45.43
FS2-900-900 900 29 45.43
FS2-1200-500 500 29 60.57
FS2-1200-900 900 29 60.57
表 2  泡沫混凝土填充圆钢管试件的几何参数
t/mm σy /MPa σu /MPa Es /GPa εu
1 326.78 504.80 196 0.181
2 255.77 431.01 201 0.182
表 3  钢管的材料性能
ρo /(kg·m?3) ρ /(kg·m?3) fc /MPa Ef /MPa
500 500 1.02 270
900 851 3.08 417
表 4  泡沫混凝土的材料性能
图 2  短柱试件加载装置
图 3  长柱试件加载
图 4  短柱试件的破坏形态
图 5  短柱试件轴向荷载-位移曲线
图 6  长柱试件的破坏形态
图 7  长柱试件轴向荷载-位移曲线
图 8  泡沫混凝土填充薄壁圆钢管有限元模型
图 9  数值模拟与试验变形对比
图 10  数值模拟与试验荷载-位移曲线对比
编号 Fue /kN Fua /kN ξ1 /%
FS1-100-500 81.49 87.09 6.87
FS1-100-900 84.25 91.33 8.40
FS2-100-500 121.28 127.16 4.84
FS2-100-900 132.37 133.00 0.47
FS1-900-500 56.63 55.05 ?2.79
FS1-900-900 60.27 62.51 3.72
FS2-900-500 78.34 75.82 ?3.21
FS2-900-900 92.68 88.51 ?4.50
FS1-1200-500 46.38 46.70 0.68
FS1-1200-900 50.80 52.79 3.92
FS2-1200-500 68.61 67.83 ?1.13
FS2-1200-900 79.81 75.25 ?5.70
表 5  极限荷载的模拟值与试验值对比
kN
Fsteel-1.0 Fsteel-2.0 Ffoam-500 Ffoam-900
61.78 112.4 2.69 8.13
表 6  各部分材料的承载力
%
编号 Fsteel/F Ffoam/F Fint/F
FS1-100-500 70.93 3.09 26.38
FS1-100-900 67.64 8.90 24.23
FS2-100-500 88.39 2.12 9.49
FS2-100-900 84.51 6.11 9.38
表 7  短柱试件各部分材料对极限承载力的贡献
图 11  稳定承载力与长细比关系曲线
图 12  稳定承载力与径厚比的关系曲线
图 13  泡沫混凝土的材料性能
图 14  稳定承载力与泡沫混凝土填充密度的关系曲线
编号 Fcre /kN Fcrp /kN ξ2 /%
FS5810-900-500 56.63 57.13 0.88
FS5810-900-900 60.27 60.11 ?0.27
FS5810-1200-500 46.38 45.55 ?1.79
FS5810-1200-900 50.80 47.90 5.71
FS5820-900-500 78.34 82.34 5.11
FS5820-900-900 92.68 83.38 ?10.03
FS5820-1200-500 68.61 71.78 4.62
FS5820-1200-900 79.81 72.16 ?9.59
表 8  长柱构件稳定荷载预测值与试验值对比
1 于英华, 吴雪娜, 郎国军 泡沫铝汽车碰撞吸能器仿真分析[J]. 世界科技研究与发展, 2012, 34 (2): 184- 187
YU Ying-hua, WU Xue-na, LANG Guo-jun Simulation analysis of automobile collision energy-absorber[J]. World Science-Technology Research and Development, 2012, 34 (2): 184- 187
2 KRETZ R, HAUSBERGER K, G?TZINGER B Energy-absorbing behavior of aluminum foams: head impact tests on the A-Pillar of a car[J]. Advanced Engineering Materials, 2002, 4 (10): 781- 785
doi: 10.1002/1527-2648(20021014)4:10<781::AID-ADEM781>3.0.CO;2-U
3 BAROUTAJI A, GILCHRIST M D, SMYTH D, et al Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading[J]. Thin-Walled Structures, 2015, 86: 121- 131
doi: 10.1016/j.tws.2014.08.018
4 YUEN S C K, NURICK G N, WITBEEN H L The response of sandwich panels made of thin-walled tubes subjected to axial load[J]. International Journal of Protective Structures, 2011, 2 (4): 477- 498
doi: 10.1260/2041-4196.2.4.477
5 B?RVIK T, HOPPERSTAD O S, REYES A, et al Empty and foam-filled circular aluminum tubes subjected to axial and oblique quasistatic loading[J]. International Journal of Crashworthiness, 2003, 8 (5): 481- 494
doi: 10.1533/ijcr.2003.0254
6 黄炼, 吕志强, 赵应龙 泡沫铝填充圆管轴向动力屈曲及吸能特性研究[J]. 舰船科学技术, 2009, 31 (8): 55- 59
HUANG Lian, LV Zhi-qiang, ZHAO Ying-long Studies on the asial dynamical buckling and energy absorption properties of aluminum foam-filled circular tubes[J]. Ship Science and Technology, 2009, 31 (8): 55- 59
7 REZAEI B, NIKNEJAD A, ASSAEE H, et al Axial splitting of empty and foam-filled circular composite tubes: an experimental study[J]. Archives of Civil and Mechanical Engineering, 2015, 15 (3): 650- 662
doi: 10.1016/j.acme.2014.09.003
8 REZVANI M J, JAFARIAN B An experimental investigation on energy absorption of thin-walled bitubal structures by inversion and axial collapse[J]. International Journal of Mechanical Sciences, 2017, 126: 270- 280
doi: 10.1016/j.ijmecsci.2017.03.005
9 RAZAZAN M, REZVANI M J, SOUZANGARZADEH H Evaluation of the performance of initiator on energy absorption of foam-filled rectangular tubes: experimental and numerical assessment[J]. Experimental Techniques, 2017, 42 (9): 1- 11
10 REID S R, REDDY T Y, GRAY M D Static and dynamic axial crushing of foam-filled sheet metal tubes[J]. International Journal of Mechanical Sciences, 1986, 28 (5): 295- 322
doi: 10.1016/0020-7403(86)90043-3
11 桂良进, 范子杰, 王青春 泡沫填充圆管的轴向压缩能量吸收特性[J]. 清华大学学报: 自然科学版, 2003, 43 (11): 1526- 1529
GUI Liang-jin, FAN Zi-jie, WANG Qing-chun Energy-absorption properties of foam-filled circular tubes subjected to axial crushing[J]. Journal of Tsinghua University: Science and Technology, 2003, 43 (11): 1526- 1529
12 程涛, 向宇, 李健, 等 泡沫铝填充多棱管的吸能分析[J]. 振动与冲击, 2011, 30 (9): 237- 242
CHENG Tao, XIANG Yu, LI Jian, et al Energy absorption analysis of foamed aluminum-filled prisms[J]. Journal of Vibration and Shock, 2011, 30 (9): 237- 242
doi: 10.3969/j.issn.1000-3835.2011.09.049
13 张景飞, 冯明德, 陈金刚 泡沫混凝土抗爆性能的试验研究[J]. 混凝土, 2010, 10: 10- 12
ZHANG Jing-fei, FENG Ming-de, CHEN Jin-gang Study on the knock characteristic of foam concrete[J]. Concrete, 2010, 10: 10- 12
doi: 10.3969/j.issn.1000-4637.2010.04.003
14 YUAN Pu, MA Qin-yong, ZHANG Hai-dong Energy disspation analyses on light-weight foam concrete under impact loads[J]. Electronic Journal of Geotechnical Engineering, 2014, 19: 8667- 8675
15 王代华, 刘殿书, 杜玉兰, 等 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究[J]. 爆炸与冲击, 2006, 26 (6): 562- 567
WANG Dai-hua, LIU Dian-shu, DU Yu-lan, et al Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete[J]. Explosion and Shock Waves, 2006, 26 (6): 562- 567
doi: 10.3321/j.issn:1001-1455.2006.06.015
16 杨先锋, 张志强, 杨嘉陵, 等 飞机泡沫混凝土道面拦阻系统的阻滞性能研究[J]. 兵工学报, 2017, 38 (增1): 155- 162
YANG Xian-feng, ZHANG Zhi-qiang, YANG Jia-ling, et al Research on retardation performance of aircraft foamed concrete arreesting system[J]. Acta Armamentarii, 2017, 38 (增1): 155- 162
17 BARDI F C, KYRIAKIDES S Plastic buckling of circular tubes under axial compression—part I: experiments[J]. International Journal of Mechanical Sciences, 2006, 48 (8): 830- 841
doi: 10.1016/j.ijmecsci.2006.03.005
18 BARDI F C, KYRIAKIDES S, YUN H D Plastic buckling of circular tubes under axial compression—part II: analysis[J]. International Journal of Mechanical Sciences, 2006, 48 (8): 842- 854
doi: 10.1016/j.ijmecsci.2006.03.002
19 李应权, 朱立德, 李菊丽, 等 泡沫混凝土配合比的设计[J]. 徐州工程学院学报, 2011, 26 (2): 1- 5
LI Ying-quan, ZHU Li-de, LI Ju-li, et al Study on mix ratio design of foamed concrete[J]. Journal of Xuzhou Institute of Technology, 2011, 26 (2): 1- 5
doi: 10.3969/j.issn.1674-3571-B.2011.02.001
20 金属材料室温拉伸试验方法: GB/T 228-2010 [S]. 北京: 中国标准出版社, 2010.
21 钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975-1998 [S]. 北京: 中国标准出版社, 1998.
22 泡沫混凝土行业标准: JG/T 266-2011 [S]. 北京: 中国标准出版社, 2011.
23 GUILLOW S R, LU G, GRZEBIETA R H Quasi-static axial compression of thin-walled circular aluminum tubes[J]. International Journal of Mechanical Sciences, 2001, 43 (9): 2103- 2123
doi: 10.1016/S0020-7403(01)00031-5
24 熊耀清, 姚谦峰 轻质多孔混凝土受压应力-应变全曲线试验研究[J]. 四川建筑科学研究, 2010, 36 (2): 228- 232
XIONG Yao-qing, YAO Qian-feng Experimental study on the total stress-strain curve of porous lightweight concrete[J]. Sichuan Building Science, 2010, 36 (2): 228- 232
doi: 10.3969/j.issn.1008-1933.2010.02.059
25 陈骥. 钢结构稳定理论与设计[M]. 北京: 科学出版社, 2001.
26 何书明. 泡沫混凝土本构关系的研究 [D]. 吉林: 吉林建筑大学, 2014.
HE Shu-ming. Research about the constitutive relation of foam concrete [D]. Jilin: Jilin University of Architecture, 2014.
[1] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[2] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[3] 郑山锁,郑跃,董立国,可亮,张艺欣. 近海环境下锈蚀箍筋约束混凝土本构模型[J]. 浙江大学学报(工学版), 2020, 54(1): 48-55.
[4] 李世伟,杨永清,蒲黔辉,孙博. 轴压圆钢管混凝土短柱非线性徐变效应分析方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1083-1091.
[5] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[6] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[7] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[8] 夏超英,吴刚,于佳丽. 基于一致渐近稳定观测器的模块化多电平变流器控制系统设计[J]. 浙江大学学报(工学版), 2019, 53(11): 2238-2247.
[9] 朱谢联,董石麟. 六杆四面体双曲面冷却塔网壳的构形、静力与稳定性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1907-1915.
[10] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[11] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[12] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[13] 王海艳, 程严. 基于离散系数的双向服务选择方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1197-1204.
[14] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[15] 唐晓武, 李姣阳, 邹金杰, 赵宇, 甘鹏路, 刘维, 潘乘浪. 浅埋盾构隧道开挖面失稳发展过程模型试验[J]. 浙江大学学报(工学版), 2017, 51(5): 863-869.