Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 99-116    DOI: 10.3785/j.issn.1008-973X.2026.01.010
机械工程     
水下机械手研究进展
肖华平(),李翰林,刘书海
中国石油大学(北京) 机械与储运工程学院,北京 102249
Review of underwater manipulators
Huaping XIAO(),hanlin LI,Shuhai LIU
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
 全文: PDF(2071 KB)   HTML
摘要:

从驱动方式的角度综述水下机械手的发展现状,讨论动力学建模、运动控制及自主智能化在水下机械手作业中的关键作用,分析末端执行器从刚性向柔性演化的趋势,总结现有水下机械手在结构设计、动力学模型、自主智能控制等方面存在的问题. 动力学建模、运动控制及自主智能技术作为实现水下机械手作业的关键技术,旨在应对作业环境的复杂性和不确定性. 具有自主作业与精确运动控制能力的智能水下机械手在现代海洋工程、深海探索以及海洋资源开发中展现出广阔的应用前景.

关键词: 水下机械手驱动方式动力学模型运动控制自主智能化末端执行器    
Abstract:

The development of underwater manipulators was reviewed from the perspective of actuation methods. The key roles of dynamic modeling, motion control, and autonomous intelligence in the operations of underwater manipulators were discussed, and the trend of end-effectors evolving from rigid to flexible structures was analyzed. Problems of existing underwater manipulators in aspects such as structural design, dynamic modeling, and autonomous intelligent control were summarized. The aim of the dynamic modeling, motion control, and autonomous intelligence, which are the key technologies for realizing the operations of underwater manipulators, is to deal with the complexity and uncertainty of underwater operational environments. The intelligent underwater manipulators with the capabilities of autonomous operation and precise motion control have broad application prospects in marine engineering, deep-sea exploration, and ocean resource development.

Key words: underwater manipulators    actuation method    dynamic model    motion control    autonomous intelligence    end-effectors
收稿日期: 2025-01-11 出版日期: 2025-12-15
:  TP 241.2  
基金资助: 北京市自然科学基金资助项目(3232013).
作者简介: 肖华平(1983—),男,副教授,博导,从事机器人技术研究. orcid.org/0000-0002-7649-3484. E-mail:hxiao@cup.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖华平
李翰林
刘书海

引用本文:

肖华平,李翰林,刘书海. 水下机械手研究进展[J]. 浙江大学学报(工学版), 2026, 60(1): 99-116.

Huaping XIAO,hanlin LI,Shuhai LIU. Review of underwater manipulators. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 99-116.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.010        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/99

图 1  水下机械手的关键要素
图 2  水下机械手发展历程
液压机械手名称研发公司自由度作业
深度/m
伸展
距离/m
质量
(空气)/kg
质量
(水下)/kg
抓举
能力/kg
腕关节
力矩/(N·m)
控制方式
MK37[6]Western Space and Marine611 0000.94431623力反馈
The ARM[6]Western Space and Marine611 0001.71459745.4力反馈
Titan 4[14]Schilling Robotics64 0001.92210078122170位置
Atlas 7P/7R[14]Schilling Robotics66 5001.6757350250205速率
Orion 7P/7R[14]Schilling Robotics66 5002.013543868205位置/速率
Orion 4R[14]Schilling Robotics36 5002.0136448181205速率
Grips[15]Kratf TeleRobotics63 0001.28959418220主从+力反馈
Raptor[15]Kratf TeleRobotics63 0001.6397544227135主从+力反馈
Predator[15]Kratf TeleRobotics63 0002.0138051227135主从+力反馈
HLK-43000[16]Hydro-Lek53 0000.668.44.2108.2速率
HLK-5300[16]Hydro-Lek66 0001.4283620.23260速率
TA40[17]Forum Energy Technologies67 0002.170
TA60[17]Forum Energy Technologies41.417856380250
HYDRA UW3[18]KNR Systems Inc.62 5002.17300位置
Atlas Hybrid[19]Oceaneering66 5001.66735065205位置/速率
7F-HARM[20]Seamor Marine Ltd.66001.073
G501[21]Envirex43 0000.8151310080速率
M501[21]Envirex43 0000.9514115045速率
M701[21]Envirex63 0001.217145030速率
Magnum-5Mini[22]ISE46 0000.71136814速率
Magnum-6Mini[22]ISE56 0000.9663454108速率
Magnum-7[22]ISE66 0001.571454108位置/速率
表 1  现有的国外商用液压机械手相关参数
液压机械手名称研发单位自由度作业
深度/m
伸展
距离/m
质量
(空气)/kg
质量
(水下)/kg
抓举
能力/kg
腕关节
力矩/(N·m)
控制方式
HR01号机械手[13]沈阳自动化研究所52000.81005主从
七功能液压机械手[23]浙江大学67 0002.1<100<7570180主从
七功能主从伺服液压机械手[24]沈阳自动化研究所67 0001.965主从/伺服
华海-6H[25]华中科技大学51 5001.3765100主从
小型液压机械手[26]浙江大学61100
七功能液压机械手[26]浙江大学64 5001.645100主从
鱼鹰号机械手[27]华中科技大学32.805100开关
蓝鲸号打捞机械手[28]华中科技大学32.803440150
蓝鲸号作业机械手[28]华中科技大学62.312032
七功能水下机械手[29]哈尔滨工程大学6>1.67054主从
SIWR-Ⅱ水下机械手[30]哈尔滨工程大学51.220主从
表 2  国内原型液压机械手相关参数
电动机械手名称研发单位/公司自由度作业
深度/m
伸展
距离/m
质量
(空气)/kg
质量
(水下)/kg
抓举
能力/kg
腕关节
力矩/(N·m)
控制方式
JASON manipulator[31]Deep Submergence Laboratory33 000
AMADEUS manipulator[33]Ansaldo7500速率
MARIS 7080[34]Ansaldo66 0001.465458半自动
UMA-1500[41]Graal Tech61 5002281410位置
Poseidon[42]University of Liverpool51001375PID
SAMURAI[43]Space Systems Laboratory66 0001.6
Electromechanical
telemanipulator[44]
Tecnomare/Ansaldo6216030主从/力反馈
BE5-500[45]Ocean Innovation System65000.71581.6速率
Bravo 3[46]Reach Robotics24500.4142.61520主从
X7[46]Reach Robotics63000.5082.91.837位置/速率
Arm 5E Micro[47]ECA46 0000.641051010位置/速率
Arm 5E[47]ECA46 000127182525位置/速率
Arm 7E[47]ECA66 0001.796949.24025位置/速率
表 3  国外电动机械手相关参数
电动机械手名称研发单位/公司自由度作业深度/m伸展距离/m质量(空气)/kg质量(水下)/kg抓举能力/kg腕关节力矩/(N·m)控制方式
自主式水下机械手[32]华中科技大学2701.3412.512智能
三功能水下机械手[37]沈阳自动化研究所2
华海-4E[38]华中科技大学43 5001.3<9010
水下电动机械手[39]浙江大学45000.69414.331
L20[40]南京华研53001.2453610主从
东麒M3[40]南京华研23007.83.449位置/速率
东麒S7[40]南京华研43007.33.3位置/速率
HUST-8FSA[48]华中科技大学61003150主从
4自由度水下机械手[49]哈尔滨工程大学40.684
表 4  国内电动机械手相关参数
图 3  水下机械手的水动力模型示意图
图 4  Morison方程的计算参数示意图
控制方式轨迹跟踪误差/rad适用条件优点缺点或存在问题
PID控制10?1~10?2适用于简单、线性系统,或对控制精度要求不高的场景,如简单的抓取操作结构简单、鲁棒性好、可靠性高系统自适应性差、抗干扰能力弱;在水下复杂环境中,PID参数调整困难
自适应控制10?2~10?3适用于模型不确定性高、存在外部扰动和参数变化的系统能够对建模参数进行估计、适应力强、鲁棒性好实现复杂、计算量较大,对系统动态特性要求较高且须对系统模型有一定了解
滑模控制10?2~10?3适用于强非线性系统,对快速响应和鲁棒性要求高的场景,如水下应急操作鲁棒性强、对参数变化和扰动不敏感、快速响应滑模面和控制律设计复杂,存在抖振、收敛速度不快、具有奇异性等问题
模糊控制10?2~10?3适用于难以建立精确数学模型的系统,如水环境条件复杂,参数难以精确测定不依赖精确数学模型,设计灵活、鲁棒性强系统控制精度有限,极其依赖经验总结,动态适应性较差
神经网络控制10?2~10?3适用于复杂非线性系统,尤其是需要自适应和学习能力的场景,如设备维修、安装具有很强的适应性和学习能力机理复杂、参数调节困难,需要大量数据和计算资源;存在过拟合问题,对数据噪声敏感
复合控制10?2~10?5适用于需要高精度控制且存在可测量扰动的系统融合各种控制优势,控制精度高、适应性强系统参数较多,各种控制之间的融合需要相互协调
表 5  水下机械手运动控制方式对比
刚性末端执行器名称研发单位手指结构工作水深/m驱动方式传动方式质量(空气)/kg抓取力/N
AMADEUS[92]爱丁堡赫瑞瓦特大学3指液压3.515.4
多关节刚性夹持器[93]东海大学2指电动齿轮+腱绳
十二面体灵巧手[94]哈佛大学5指1 100电动连杆
SeeGrip夹持器[95]德国人工智能研究中心3指6 000液压+电动连杆9.5100
MARIS灵巧夹持器[96]博洛尼亚大学3指50电动腱绳4.5150
HEU Hand I[97]哈尔滨工程大学3指电动腱绳
HEU Hand II[98]哈尔滨工程大学3指电动齿轮3.18
GUH14[99]卡拉布里亚大学/赫罗纳大学3指60电动齿轮+腱绳0.3
Ocean One hand[100]斯坦福大学3指50电动腱绳35
Three-Fingered Gripper[101]博洛尼亚大学3指100电动蜗轮蜗杆4.550
UNIBO[102]博洛尼亚大学3指25电动腱绳4.5150
表 6  刚性末端执行器相关参数
图 5  具有灵巧、柔顺特性的刚性末端执行器
图 6  流体驱动执行器的2种常见构型
图 7  兼具柔顺性与安全性的软体末端执行器
软体末端执行器名称研发单位手指结构工作水深/m驱动方式质量(空气)/kg抓取力/N
3D打印的PA型抓手[106]哈佛大学4指2 224气动16.6
超轻柔PA型执行器[107]哈佛大学6指气动0.7
仿捕蝇草PA型抓手[108]沈阳自动化研究所3指气动
仿章鱼臂软体夹持器[109]北京大学伞形1.5气动3.8
FRA型软体手[110]哈佛大学1指170气动52.9
软膜抓手[111]贡比涅技术大学/罗德岛大学伞形1 000气动25.1
SMA拟人手指[115]阿克伦大学1指SMA0.0449.01
SMA夹持器[116]德尔夫特理工大学4指SMA
表 7  软体末端执行器相关参数
1 MORAN M E Evolution of robotic arms[J]. Journal of Robotic Surgery, 2007, 1 (2): 103- 111
doi: 10.1007/s11701-006-0002-x
2 WANG F, LIU H, CAO L, et al. A novel lightweight underwater manipulator based on ROS2 for reliable intervention [C]// Proceedings of the 9th International Conference on Automation, Control and Robotics Engineering. Jeju Island: IEEE, 2024: 345–349.
3 ANTONELLI G. Underwater robots: 2nd edition [M]. Cham: Springer, 2006: 1–7.
4 JONES D O B Using existing industrial remotely operated vehicles for deep-sea science[J]. Zoologica Scripta, 2009, 38 (s1): 41- 47
doi: 10.1111/j.1463-6409.2007.00315.x
5 HOTTA S, MITSUI Y, SUKA M, et al Lightweight underwater robot developed for archaeological surveys and excavations[J]. ROBOMECH Journal, 2023, 10 (1): 2
doi: 10.1186/s40648-023-00240-4
6 SIVČEV S, COLEMAN J, OMERDIĆ E, et al Underwater manipulators: a review[J]. Ocean Engineering, 2018, 163: 431- 450
doi: 10.1016/j.oceaneng.2018.06.018
7 KOŁODZIEJCZYK W Some considerations on an underwater robotic manipulator subjected to the environmental disturbances caused by water current[J]. Acta Mechanica et Automatica, 2016, 10 (1): 43- 49
doi: 10.1515/ama-2016-0008
8 ZHONG Y, YANG F Dynamic modeling and adaptive fuzzy sliding mode control for multi-link underwater manipulators[J]. Ocean Engineering, 2019, 187: 106202
doi: 10.1016/j.oceaneng.2019.106202
9 ANDERSON V C. MPL experimental RUM [R]. La Jolla: Scripps Institution of Oceanography, 1960: SIO Reference 60-26.
10 纪辉, 兰宇, 武子为, 等 面向水下作业的水液压机械手研究与展望[J]. 机械工程学报, 2023, 59 (4): 283- 294
JI Hui, LAN Yu, WU Ziwei, et al Research progress and prospect of water hydraulic manipulator for underwater operation[J]. Journal of Mechanical Engineering, 2023, 59 (4): 283- 294
doi: 10.3901/JME.2023.04.283
11 WANG Z, CUI W For safe and compliant interaction: an outlook of soft underwater manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021, 235 (1): 3- 14
doi: 10.1177/1475090220950911
12 Woods Hole Oceanographic Institution. History of Alvin [EB/OL]. [2024-07-15]. https://www.whoi.edu/what-we-do/explore/underwater-vehicles/hov-alvin/history-of-alvin/.
13 顾云冠, 曹智裕, 王道炎, 等. 系缆无人遥控潜水器HR01[J]. 海洋工程, 1987, 5(4): 1–7.
GU Yunguan, CAO Zhiyu, WANG Daoyan, et al. Tethered remotely operated vehicle HR01 [J]. The Ocean Engineering, 1987, 5(4): 1–7.
14 Schilling Robotics. Manipulator systems [EB/OL]. [2024-07-15]. https://www.technipfmc.com/en/what-we-do/subsea/robotics/manipulator-systems/.
15 Kratf TeleRobotics. Products [EB/OL]. [2024-07-15]. http://krafttelerobotics.cn/products/index.html.
16 Hydro-Lek. Manipulators [EB/OL]. [2024-07-15]. http://www.hydro-lek.com/manipulators.php.
17 Forum Energy Technologies. ROV tooling and components [EB/OL]. [2024-07-15]. https://f-e-t.com/subsea/rov-tooling-and-components/.
18 KNR Systems Inc. HYDRA-UW [EB/OL]. [2024-07-15]. http://rnd.knrsys.com/english/view.html?id_no=25&id_no1=5.
19 Oceaneering. Atlas hybrid manipulator [EB/OL]. [2024-07-15]. https://www.oceaneering.com/brochures/atlas-hybrid-manipulator/.
20 Seamor Marine Ltd. Hydraulic articulating robotic manipulator [EB/OL]. [2024-07-15]. https://www.environmental-expert.com/products/seamor-model-7f-h-arm-hydraulic-articulating-robotic-manipulator-281530.
21 Envirex. Hydraulic light-weight manipulator series [EB/OL]. [2024-07-15]. https://envirex.no/titanrob/.
22 ISE. Magnum subsea manipulators with integrated telemetry [EB/OL]. [2024-07-15]. http://207.102.77.253/manips.html.
23 杨喜荣. 深海水下作业型机械手控制系统研究[D]. 杭州: 浙江大学, 2006.
YANG Xirong. Research on control system of deep-sea underwater manipulator [D]. Hangzhou: Zhejiang University, 2006.
24 中国科学院沈阳自动化研究所. 7000米深海作业机械手[EB/OL]. (2015-10-23) [2024-07-20]. http://www.sia.cas.cn/kxcb/kpwz/201510/t20151023_4444028.html.
25 申雄. 模拟深水环境下双机械手协调作业关键技术研究[D]. 武汉: 华中科技大学, 2013.
SHEN Xiong. Study on key technologies for coordinated manipulation for dual manipulators in simulated deepwater environment [D]. Wuhan: Huazhong University of Science and Technology, 2013.
26 罗高生. 深海七功能主从液压机械手及其非线性鲁棒控制方法研究[D]. 杭州: 浙江大学, 2013.
LUO Gaosheng. Research on subsea 7 function master-slave hydraulic manipulator and its nonlinear robust control [D]. Hangzhou: Zhejiang University, 2013.
27 向忠祥, 茅及愚 “鱼鹰”号载人潜器打捞机械手的研制[J]. 海洋技术, 1990, 9 (1): 12- 17
XIANG Zhongxiang, MAO Jiyu Manipulator development for manned underwater salvage vehicle “the cormorant”[J]. Ocean Technology, 1990, 9 (1): 12- 17
28 茅及愚, 张向明, 徐国华, 等 兰鲸号潜器两型机械手的结构设计研究[J]. 海洋工程, 1998, 16 (1): 81- 88
MAO Jiyu, ZHANG Xiangming, XU Guohua, et al The structure design and study of two manipulators on blue whale underwater vehicle[J]. The Ocean Engineering, 1998, 16 (1): 81- 88
29 王千年. 深海液压机械臂的设计与分析[D]. 合肥: 中国科学技术大学, 2021: 6.
WANG Qiannian. Design and analysis of deep sea hydraulic manipulator [D]. Hefei: University of Science and Technology of China, 2021: 6.
30 孟庆鑫, 叶华武, 王晓东 SIWR-Ⅱ水下作业机械手动力机构特性分析[J]. 哈尔滨船舶工程学院学报, 1993, 14 (1): 60- 65
MENG Qingxin, YE Huawu, WANG Xiaodong Analyzing the characteristics of the motive mechanism of SIWR-Ⅱ manipulator under the water[J]. Journal of Harbin Shipbuilding Engineering Institute, 1993, 14 (1): 60- 65
31 YOERGER D R, SCHEMPF H, DIPIETRO D M Design and performance evaluation of an actively compliant underwater manipulator for full-ocean depth[J]. Journal of Robotic Systems, 1991, 8 (3): 371- 392
doi: 10.1002/rob.4620080306
32 王承禧, 徐国华, 黄群, 等 自主式水下机械手系统研究[J]. 海洋工程, 1996, 14 (3): 28- 36
WANG Chengxi, XU Guohua, HUANG Qun, et al The research on autonomous underwater manipulator system[J]. The Ocean Engineering, 1996, 14 (3): 28- 36
33 LANE D M, DAVIES J B C, CASALINO G, et al AMADEUS: advanced manipulation for deep underwater sampling[J]. IEEE Robotics & Automation Magazine, 1997, 4 (4): 34- 45
34 YUH J, CHOI S K, IKEHARA C, et al. Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM) [C]// Proceedings of 1998 International Symposium on Underwater Technology. Tokyo: IEEE, 1998: 63–68.
35 RIBAS D, RIDAO P, TURETTA A, et al I-AUV mechatronics integration for the TRIDENT FP7 project[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20 (5): 2583- 2592
doi: 10.1109/TMECH.2015.2395413
36 FERNÁNDEZ J J, PRATS M, SANZ P J, et al Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention[J]. IEEE Robotics & Automation Magazine, 2013, 20 (4): 121- 130
37 张奇峰, 张艾群 基于能源消耗最小的自治水下机器人—机械手系统协调运动研究[J]. 机器人, 2006, 28 (4): 444- 447
ZHANG Qifeng, ZHANG Aiqun Coordinated motion of an autonomous underwater vehicle-manipulator system based on energy consumption minimization[J]. Robot, 2006, 28 (4): 444- 447
38 XIAO Z, XU G, PENG F, et al Development of a deep ocean electric autonomous manipulator[J]. China Ocean Engineering, 2011, 25 (1): 159- 168
doi: 10.1007/s13344-011-0014-9
39 HU X, CHEN J, ZHOU H, et al Development of underwater electric manipulator based on interventional autonomous underwater vehicle (AUV)[J]. Journal of Zhejiang University: Science A, 2024, 25 (3): 238- 250
doi: 10.1631/jzus.A2200621
40 南京华研. 水下电动机械臂 [EB/OL]. [2024-07-21]. https://www.huayanseal.com/?list_8/.
41 Graal Tech. UMA-1500-Manipulator [EB/OL]. [2024-07-20]. https://www.graaltech.com/products/uma-1500/.
42 SMITH J S, YU R, SARAFIS I, et al. Computer vision control of an underwater manipulator [C]// Proceedings of OCEANS'94. Brest: IEEE, 1994: I/187–I/192.
43 LEWANDOWSKI C, AKIN D, DILLOW B, et al. Development of a deep-sea robotic manipulator for autonomous sampling and retrieval [C]// Proceedings of the IEEE/OES Autonomous Underwater Vehicles. Woods Hole: IEEE, 2008: 1–6.
44 TERRIBILE A, PRENDIN W, LANZA R. An innovative electromechanical underwater telemanipulator-present status and future development [C]// Proceedings of OCEANS'94. Brest: IEEE, 2002: II/188–II/191.
45 Ocean Innovation System. STR OIS STR 5 function electric manipulator arm [EB/OL]. [2024-07-20]. https://www.str-subsea.com/products/rov-tools/manipulators-boom-arms/str-ois-str-5-function-electric-manipulator-arm.
46 Reach Robotics. ROV arms for harsh environments [EB/OL]. [2024-07-20]. https://reachrobotics.com/products/manipulators/.
47 ECA. Subsea electrical manipulator arms [EB/OL]. [2024-07-20]. https://www.ecagroup.com/en/solutions/subsea-electrical-manipulator-arms.
48 张建华. 深海模拟环境中液压水下机械手的仿真研究[D]. 武汉: 华中科技大学, 2012.
ZHANG Jianhua. Research and simulation of hydraulic underwater manipulator in the simulated environment of deep sea [D]. Wuhan: Huazhong University of Science and Technology, 2012.
49 安江波. 大时延水下机械手位置伺服控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
AN Jiangbo. Research on position servo control of underwater manipulator with time delay [D]. Harbin: Harbin Engineering University, 2008.
50 PURUSHOTHAM A Kane’s method for robotic arm dynamics: a novel approach[J]. IOSR Journal of Mechanical and Civil Engineering, 2013, 6 (4): 7- 13
doi: 10.9790/1684-640713
51 裴香丽, 田颖, 张明路 水下机械手水动力学分析及控制方法研究[J]. 船舶力学, 2022, 26 (5): 679- 690
PEI Xiangli, TIAN Ying, ZHANG Minglu Research on hydrodynamic analysis and control method of underwater manipulators[J]. Journal of Ship Mechanics, 2022, 26 (5): 679- 690
52 MORISON J R, JOHNSON J W, SCHAAF S A The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2 (5): 149- 154
doi: 10.2118/950149-G
53 王华, 孟庆鑫, 王立权 基于切片理论的水下灵巧手手指动力学分析[J]. 机器人, 2007, 29 (2): 160- 166
WANG Hua, MENG Qingxin, WANG Liquan Analysis on finger dynamics of dexterous underwater hand based on strip theory[J]. Robot, 2007, 29 (2): 160- 166
54 王懿, 张爱霞, 郭瑞岩, 等 六自由度水下机械臂动力学模型及流阻影响研究[J]. 北京理工大学学报, 2020, 40 (11): 1143- 1149
WANG Yi, ZHANG Aixia, GUO Ruiyan, et al Dynamic model of 6-DOF underwater manipulator and its influence of flow resistance[J]. Transactions of Beijing Institute of Technology, 2020, 40 (11): 1143- 1149
55 高涵, 张明路, 张小俊, 等 水下机械手动力学模型及力矩影响研究[J]. 机械设计与制造, 2017, (3): 68- 71
GAO Han, ZHANG Minglu, ZHANG Xiaojun, et al Research on underwater manipulator dynamics model and torque influence[J]. Machinery Design & Manufacture, 2017, (3): 68- 71
56 ZHAO S, YUH J Experimental study on advanced underwater robot control[J]. IEEE Transactions on Robotics, 2005, 21 (4): 695- 703
doi: 10.1109/TRO.2005.844682
57 肖治琥, 徐国华 流干扰下的水下机械手动力学建模分析[J]. 中国机械工程, 2011, 22 (21): 2521- 2526
XIAO Zhihu, XU Guohua Study on dynamics of underwater manipulator under flow influences[J]. China Mechanical Engineering, 2011, 22 (21): 2521- 2526
58 GE D, WANG G, GE J, et al Trajectory tracking control of two-joint underwater manipulator in ocean-wave environment[J]. Ocean Engineering, 2024, 292: 116329
doi: 10.1016/j.oceaneng.2023.116329
59 刘晓瑜, 田颖, 张明路 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28 (4): 389- 398
LIU Xiaoyu, TIAN Ying, ZHANG Minglu Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28 (4): 389- 398
60 KOLODZIEJCZYK W The method of determination of transient hydrodynamic coefficients for a single DOF underwater manipulator[J]. Ocean Engineering, 2018, 153: 122- 131
doi: 10.1016/j.oceaneng.2018.01.090
61 SARPKAYA T Lift, drag, and added-mass coefficients for a circular cylinder immersed in a time-dependent flow[J]. Journal of Applied Mechanics, 1963, 30 (1): 13- 15
doi: 10.1115/1.3630062
62 KOŁODZIEJCZYK W, KOŁODZIEJCZYK M, KUŹMIEROWSKI T, et al Transient hydrodynamic coefficients for a single DOF underwater manipulator of a square cross-section[J]. Ocean Engineering, 2023, 268: 113438
doi: 10.1016/j.oceaneng.2022.113438
63 WANG X, LIU Y, XUE G, et al Transient hydrodynamics coefficients analysis of a six-degree-of-freedom underwater manipulator[J]. Ocean Engineering, 2024, 312: 119156
doi: 10.1016/j.oceaneng.2024.119156
64 刘晓瑜. 基于水动力学的水下机械臂动力学分析及仿真实 验[D].天津: 河北工业大学, 2021.
LIU Xiaoyu. Research on dynamic analysis and simulation test of underwater manipulator based on hydrodynamics [D]. Tianjin: Hebei University of Technology, 2021.
65 王庆云, 韩明勇, 常开应, 等 水下机器人水动力参数CFD计算及操纵性预报[J]. 中国海洋平台, 2023, 38 (1): 50- 56
WANG Qingyun, HAN Mingyong, CHANG Kaiying, et al CFD calculation of underwater vehicle hydrodynamic parameters and maneuverability prediction[J]. China Offshore Platform, 2023, 38 (1): 50- 56
doi: 10.12226/j.issn.1001-4500.2023.01.20230108
66 胡志强, 林扬, 谷海涛 水下机器人粘性类水动力数值计算方法研究[J]. 机器人, 2007, 29 (2): 145- 150
HU Zhiqiang, LIN Yang, GU Haitao On numerical computation of viscous hydrodynamics of unmanned underwater vehicle[J]. Robot, 2007, 29 (2): 145- 150
67 FILARETOV V F, KONOPLIN A J, GETMAN A V Experimental determination of the viscous friction coefficients for calculation of the force impacts on the moving links of the underwater manipulators[J]. Mehatronika, Avtomatizacia, Upravlenie, 2015, 16 (11): 738- 743
doi: 10.17587/mau.16.738-743
68 ZHANG M, LIU X, TIAN Y Modeling analysis and simulation of viscous hydrodynamic model of single-DOF manipulator[J]. Journal of Marine Science and Engineering, 2019, 7 (8): 261
doi: 10.3390/jmse7080261
69 安江波, 张铭钧, 孙昌将 水下机械手控制系统研究[J]. 机械设计与制造, 2009, (5): 185- 187
AN Jiangbo, ZHANG Mingjun, SUN Changjiang Research on control of underwater manipulator[J]. Machinery Design & Manufacture, 2009, (5): 185- 187
70 程尉. 小型水下双臂机械手控制系统研究[D]. 武汉: 华中科技大学, 2020.
CHENG Wei. Research on small underwater dual-arm manipulator control system [D]. Wuhan: Huazhong University of Science and Technology, 2020.
71 YUH J, ZHAO S, LEE P M. Application of adaptive disturbance observer control to an underwater manipulator [C]// IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 3244–3249.
72 SANTHAKUMAR M A nonregressor nonlinear disturbance observer-based adaptive control scheme for an underwater manipulator[J]. Advanced Robotics, 2013, 27 (16): 1273- 1283
doi: 10.1080/01691864.2013.819608
73 XU G, XIAO Z, GUO Y, et al. Trajectory tracking for underwater manipulator using sliding mode control [C]// Proceedings of the IEEE International Conference on Robotics and Biomimetics. Sanya: IEEE, 2007: 2127–2132.
74 VENKATESAN V, MOHAN S, KIM J. Disturbance observer based terminal sliding mode control of an underwater manipulator [C]// Proceedings of the 13th International Conference on Control Automation Robotics & Vision. Singapore: IEEE, 2014: 1566–1572.
75 谭定忠, 张铭钧, 王立权, 等 水下作业液压机械手夹持力模糊控制技术的研究[J]. 机床与液压, 2001, 29 (1): 24- 25
TAN Dingzhong, ZHANG Mingjun, WANG Liquan, et al Research on fuzzy control technology of grasping force in underwater hydraulic manipulator[J]. Machine Tool & Hydraulics, 2001, 29 (1): 24- 25
doi: 10.3969/j.issn.1001-3881.2001.01.010
76 杨犇, 梁喜凤 基于模糊补偿的七自由度机械手轨迹跟踪控制[J]. 机床与液压, 2012, 40 (23): 73- 75
YANG Ben, LIANG Xifeng Track following control of a 7-DOF manipulator based on fuzzy logic compensation[J]. Machine Tool & Hydraulics, 2012, 40 (23): 73- 75
77 LUO W, CONG H. Robust NN control of the manipulator in the underwater vehicle-manipulator system [C]// Advances in Neural Networks. Hokkaido: Springer, 2017: 75–82.
78 SHANG D, LI X, YIN M, et al Rotation tracking control strategy of underwater flexible telescopic manipulator based on neural network compensation for water environment disturbance[J]. Ocean Engineering, 2023, 284: 115245
doi: 10.1016/j.oceaneng.2023.115245
79 王立权, 王春林, 杜维杰, 等 基于Fuzzy-PID的水下作业机械手控制系统设计[J]. 液压与气动, 2005, 29 (1): 27- 31
WANG Liquan, WANG Chunlin, DU Weijie, et al Design of hydraulic control system for an underwater manipulator based on fuzzy-PID[J]. Chinese Hydraulics & Pneumatics, 2005, 29 (1): 27- 31
80 胡雯蔷, 徐筱龙, 徐国华 基于小脑模型关节控制器的水下机械手复合运动控制的研究及仿真[J]. 中国机械工程, 2008, 19 (16): 1891- 1894
HU Wenqiang, XU Xiaolong, XU Guohua Research and simulation on multiplex-athletics control of underwater manipulator based on CMAC[J]. China Mechanical Engineering, 2008, 19 (16): 1891- 1894
81 付雯, 温浩, 黄俊珲, 等 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报: 自然科学版, 2023, 63 (7): 1068- 1077
FU Wen, WEN Hao, HUANG Junhui, et al Adaptive sliding mode control of underwater manipulator based on nonlinear dynamics model compensation[J]. Journal of Tsinghua University: Science and Technology, 2023, 63 (7): 1068- 1077
82 高阳, 张晓晖, 高玉儿, 等 基于神经网络和模糊补偿的水下机械臂控制[J]. 计算机工程与应用, 2022, 58 (15): 317- 323
GAO Yang, ZHANG Xiaohui, GAO Yu’er, et al Control of underwater manipulator based on neural network and fuzzy compensation[J]. Computer Engineering and Applications, 2022, 58 (15): 317- 323
83 HILDEBRANDT M, KERDELS J, ALBIEZ J, et al. Robust vision-based semi-autonomous underwater manipulation [M]// Intelligent Autonomous Systems 10. Baden: IOS Press, 2008: 308–315.
84 SIVČEV S, ROSSI M, COLEMAN J, et al Fully automatic visual servoing control for work-class marine intervention ROVs[J]. Control Engineering Practice, 2018, 74: 153- 167
doi: 10.1016/j.conengprac.2018.03.005
85 肖治琥. 深水机械手动力学特性及自主作业研究[D]. 武汉: 华中科技大学, 2011.
XIAO Zhihu. Study on dynamic characteristics and autonomous manipulation of underwater manipulator [D]. Wuhan: Huazhong University of Science and Technology, 2011.
86 JUN B H, SHIM H W, LEE P M, et al. Workspace control system of underwater tele-operated manipulators on ROVs [C]// Proceedings of the OCEANS 2009-EUROPE. Bremen: IEEE, 2009: 1–6.
87 CARRERA A, PALOMERAS N, HURTÓS N, et al Cognitive system for autonomous underwater intervention[J]. Pattern Recognition Letters, 2015, 67: 91- 99
doi: 10.1016/j.patrec.2015.06.010
88 LANE D M, MAURELLI F, KORMUSHEV P, et al PANDORA-persistent autonomy through learning, adaptation, observation and replanning[J]. IFAC-PapersOnLine, 2015, 48 (2): 238- 243
doi: 10.1016/j.ifacol.2015.06.039
89 王聪, 张子扬, 陈言壮, 等 基于深度强化学习与多参数域随机化的水下机械手自适应抓取研究[J]. 信息与控制, 2022, 51 (6): 651- 661
WANG Cong, ZHANG Ziyang, CHEN Yanzhuang, et al Deep reinforcement learning and multi-parameter domain randomization based underwater adaptive grasping research for underwater manipulator[J]. Information and Control, 2022, 51 (6): 651- 661
90 HUANG H, JIANG T, ZHANG Z, et al Learning strategies for underwater robot autonomous manipulation control[J]. Journal of the Franklin Institute, 2024, 361 (7): 106773
doi: 10.1016/j.jfranklin.2024.106773
91 YANG X, GAO J, WANG P, et al Digital twin-based stress prediction for autonomous grasping of underwater robots with reinforcement learning[J]. Expert Systems with Applications, 2025, 267: 126164
doi: 10.1016/j.eswa.2024.126164
92 LANE D M, DAVIES J B C, ROBINSON G, et al The AMADEUS dextrous subsea hand: design, modeling, and sensor processing[J]. IEEE Journal of Oceanic Engineering, 1999, 24 (1): 96- 111
doi: 10.1109/48.740158
93 TAKEUCHI K, NOMURA S, TAMAMOTO T, et al. Development of multi-joint gripper for underwater operations [C]// Proceedings of the OCEANS - MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1–6.
94 TEOH Z E, PHILLIPS B T, BECKER K P, et al Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3 (20): eaat5276
doi: 10.1126/scirobotics.aat5276
95 KAMPMANN P, KIRCHNER F Towards a fine-manipulation system with tactile feedback for deep-sea environments[J]. Robotics and Autonomous Systems, 2015, 67: 115- 121
doi: 10.1016/j.robot.2014.09.033
96 SIMETTI E, WANDERLINGH F, TORELLI S, et al Autonomous underwater intervention: experimental results of the MARIS project[J]. IEEE Journal of Oceanic Engineering, 2018, 43 (3): 620- 639
doi: 10.1109/JOE.2017.2733878
97 WANG H, HUANG X, QI X, et al. Development of underwater robot hand and its finger tracking control [C]// Proceedings of the IEEE International Conference on Automation and Logistics. Jinan: IEEE, 2007: 2973–2977.
98 MENG Q, WANG H, LI P, et al. Dexterous underwater robot hand: HEU hand II [C]// Proceedings of the International Conference on Mechatronics and Automation. Luoyang: IEEE, 2006: 1477–1482.
99 SPADAFORA F, MUZZUPAPPA M, BRUNO F, et al Design and construction of a robot hand prototype for underwater applications[J]. IFAC-PapersOnLine, 2015, 48 (2): 294- 299
doi: 10.1016/j.ifacol.2015.06.048
100 STUART H, WANG S, KHATIB O, et al The Ocean One hands: an adaptive design for robust marine manipulation[J]. The International Journal of Robotics Research, 2017, 36 (2): 150- 166
doi: 10.1177/0278364917694723
101 BEMFICA J R, MELCHIORRI C, MORIELLO L, et al Mechatronic design of a three-fingered gripper for underwater applications[J]. IFAC Proceedings Volumes, 2013, 46 (5): 307- 312
doi: 10.3182/20130410-3-CN-2034.00080
102 BEMFICA J R, MELCHIORRI C, MORIELLO L, et al. A three-fingered cable-driven gripper for underwater applications [C]// Proceedings of the IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 2469–2474.
103 WANG T, GE L, GU G Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions[J]. Sensors and Actuators A: Physical, 2018, 271: 131- 138
doi: 10.1016/j.sna.2018.01.018
104 LIU J, IACOPONI S, LASCHI C, et al Underwater mobile manipulation: a soft arm on a benthic legged robot[J]. IEEE Robotics & Automation Magazine, 2020, 27 (4): 12- 26
105 GONG Z, CHEN B, LIU J, et al An opposite-bending-and-extension soft robotic manipulator for delicate grasping in shallow water[J]. Frontiers in Robotics and AI, 2019, 6: 26
doi: 10.3389/frobt.2019.00026
106 VOGT D M, BECKER K P, PHILLIPS B T, et al Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms[J]. PLoS One, 2018, 13 (8): e0200386
doi: 10.1371/journal.pone.0200386
107 SINATRA N R, TEEPLE C B, VOGT D M, et al Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4 (33): eaax5425
doi: 10.1126/scirobotics.aax5425
108 DOU J, ZHANG D, SUN Y, et al. Design of enveloping underwater soft gripper based on the bionic structure [C]// International Conference on Intelligent Robotics and Applications. Harbin: Springer, 2022: 311–322.
109 WU M, AFRIDI W H, WU J, et al Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities[J]. Research, 2024, 7: 456
doi: 10.34133/research.0456
110 GALLOWAY K C, BECKER K P, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
111 LICHT S, COLLINS E, BALLAT-DURAND D, et al. Universal jamming grippers for deep-sea manipulation [C]// Proceedings of the OCEANS 2016 MTS/IEEE Monterey. Monterey: IEEE, 2016: 1–5.
112 ABOZAID Y A, ABOELRAYAT M T, FAHIM I S, et al Soft robotic grippers: a review on technologies, materials, and applications[J]. Sensors and Actuators A: Physical, 2024, 372: 115380
doi: 10.1016/j.sna.2024.115380
113 SHINTAKE J, SHEA H, FLOREANO D. Biomimetic underwater robots based on dielectric elastomer actuators [C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 4957–4962.
114 KOFOD G, WIRGES W, PAAJANEN M, et al Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90 (8): 81916
doi: 10.1063/1.2695785
115 ENGEBERG E D, DILIBAL S, VATANI M, et al Anthropomorphic finger antagonistically actuated by SMA plates[J]. Bioinspiration & Biomimetics, 2015, 10 (5): 56002
[1] 汪御飞,李康康,张海彬,陈渊博,王光庆. 基于压电与电磁复合效应的超声振动能量采集方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1293-1302.
[2] 李仲兴,贾英竹,耿国庆,覃夷旭,杨鑫昌. 基于多方法加权融合的矿用车质心侧偏角估计[J]. 浙江大学学报(工学版), 2025, 59(10): 2106-2114.
[3] 黄华,赵秋舸,何再兴,李嘉然. 基于LSTM与牛顿迭代的两轴系统轮廓误差控制[J]. 浙江大学学报(工学版), 2023, 57(1): 10-20.
[4] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[5] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[6] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[7] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[8] 王雯涛,李佳田,吴华静,高鹏,阿晓荟,朱志浩. 摄像机主动位姿协同的人脸正视图像获取方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1936-1944.
[9] 郝天泽,肖华平,刘书海,谷建峰. 形状记忆聚合物在4D打印技术下的研究及应用[J]. 浙江大学学报(工学版), 2020, 54(1): 1-16.
[10] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.
[11] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[12] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[13] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[14] 魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
[15] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.