Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2221-2228    DOI: 10.3785/j.issn.1008-973X.2025.10.023
信息与通信工程     
基于多通道卷积方式的土壤重金属镍含量定量预测
付承彪1(),庄清源1,田安红2,1,*()
1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650504
2. 昆明理工大学 国土资源工程学院,云南 昆明 650093
Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method
Chengbiao FU1(),Qingyuan ZHUANG1,Anhong TIAN2,1,*()
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
 全文: PDF(6237 KB)   HTML
摘要:

为了捕捉土壤光谱中复杂的非线性关系,提出基于卷积神经网络的光谱多通道卷积方法,进行土壤重金属镍含量预测. 以某污染农田土壤为研究对象,采集122个土壤光谱样本,利用Kennard-Stone算法将样本划分为校准集和验证集. 采用Savitzky-Golay平滑与标准正态变换进行原始土壤光谱数据预处理,使用改进的相关系数法($ p $=0.01)提取296个特征波段. 采用包括ResNet、VGG、Inception和MobileNet在内的4种深度学习方法进行不同通道策略(单通道(MTF)、双通道(MTF-GASF)、多通道(MC))下的重金属镍含量预测. 在不增加模型复杂度的情况下,提出用于提升轻量化模型MC-MobileNet预测土壤镍含量精度的方法. 以决定系数、均方根误差和相对预测偏差为评估指标,进行不同模型的预测性能综合评估. 结果表明,使用多通道卷积方法后,所有模型的预测性能均有提升,模型过拟合情形得到缓解,模型相对预测偏差均大于2.5.

关键词: 卷积神经网络可见近红外光谱土壤镍含量多通道建模深度学习    
Abstract:

In order to capture the complex non-linear relationships in soil spectra, a spectral multi-channel convolution method based on convolutional neural networks was proposed, and the soil heavy metal nickel content was predicted. One hundred and twenty-two soil spectral samples were collected from polluted agricultural soils in an area. The Kennard-Stone algorithm was used to divide the samples into calibration sets and verification sets. The Savitzky-Golay smoothing and the standard normal transformation were used to preprocess the original soil spectral data, and an improved correlation coefficient method ($ p $=0.01) was used to extract 296 characteristic bands. Four deep learning methods, including ResNet, VGG, Inception, and MobileNet, were employed to predict the content of heavy metal nickel under different channel strategies: single-channel (MTF), dual-channel (MTF-GASF), and multi-channel (MC). Without increasing the model complexity, a method was proposed to enhance the prediction accuracy of the lightweight model MC-MobileNet for soil nickel content. In order to comprehensively evaluate the prediction performance of different models, three indicators, including determination coefficient, root mean square error and relative predictive deviation, were used for evaluation. Results showed that the prediction performance of all models was improved after using the multi-channel convolution method, the model overfitting scenario was mitigated, and the models under the multi-channel strategy exhibited a relative predictive deviation greater than 2.5.

Key words: convolutional neural network    visible and near-infrared spectroscopy    nickel content in soil    multi-channel modeling    deep learning
收稿日期: 2024-08-31 出版日期: 2025-10-27
CLC:  P 237  
基金资助: 国家自然科学基金资助项目(42361007,42067029);云南省科技厅项目(202205AC160005);云南省“兴滇英才支持计划”青年人才项目(KKXX202303001).
通讯作者: 田安红     E-mail: fcb@kust.edu.cn;tah@kust.edu.cn
作者简介: 付承彪(1982—),男,副教授,从事遥感图像研究. orcid.org/0000-0002-4019-1839. E-mail:fcb@kust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
付承彪
庄清源
田安红

引用本文:

付承彪,庄清源,田安红. 基于多通道卷积方式的土壤重金属镍含量定量预测[J]. 浙江大学学报(工学版), 2025, 59(10): 2221-2228.

Chengbiao FU,Qingyuan ZHUANG,Anhong TIAN. Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2221-2228.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.023        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2221

图 1  研究区域
图 2  土壤光谱反射率误差带
图 3  不同通道输入策略下各模型训练流程图
数据集ndwNi/10?6Cv/%
最小值最大值平均值标准差
全部12220.11051315.89304.5796.42
校准9020.11051270.66293.92108.59
验证3224.6935443.11297.9067.23
表 1  土壤重金属镍含量样本数据集的参数统计
图 4  改进的相关系数法光谱波段筛选结果
图 5  光谱波段筛选后不同策略下的通道映射结果
模型$ {{R}}_{\mathrm{c}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{c}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{c}} $$ {{R}}_{\mathrm{v}}^{2} $$ {\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{v}} $$ {\mathrm{R}\mathrm{P}\mathrm{D}}_{\mathrm{v}} $
MTF-ResNet0.96738.0779.5250.853114.3872.604
MTF-VGG0.93072.0664.4530.796134.7182.211
MTF-Inception0.99223.28413.7080.814128.4702.319
MTF-MobileNet0.92176.0004.1230.770143.0222.083
MTF-GASF-ResNet0.87795.5934.0540.872106.3792.800
MTF-GASF-VGG0.86687.3133.8030.839119.7182.488
MTF-GASF-Inception0.91953.5047.5210.833121.7772.446
MTF-GASF-MobileNet0.95254.5716.3540.799133.5302.231
MC-ResNet0.92077.8504.6810.90193.5733.184
MC-VGG0.90973.9144.8880.850115.2642.585
MC-Inception0.91974.9524.2210.854113.7732.618
MC-MobileNet0.94261.4965.0960.844117.8412.528
表 2  不同策略下的深度学习模型预测性能对比
图 6  多通道策略下4种深度学习模型预测土壤镍含量的散点图
模型$ {N}_{\mathrm{p}}/{10}^{6} $$ {F}_{\mathrm{r}}/{10}^{6} $$ {t}_{\mathrm{i}}/{\mathrm{s}} $
ResNet11.1858 355.920.190 3
VGG14.72491 096.231.426 1
Inception21.7690 756.260.846 9
MobileNet0.571 370.960.112 6
ResMobileNet0.571 370.960.109 5
表 3  多通道策略下不同深度学习模型的参数统计
图 7  结合2种深度学习网络的模型架构图
图 8  组合模型预测土壤镍含量的散点图
1 PANAGOPOULOS I, KARAYANNIS A, KOLLIAS K, et al Investigation of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area[J]. Journal of Hazardous Materials, 2015, 281: 20- 26
doi: 10.1016/j.jhazmat.2014.07.040
2 KHAN M Y A, GANI K M, CHAKRAPANI G J Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of River Ganges, India[J]. Environmental Earth Sciences, 2017, 76 (5): 231
doi: 10.1007/s12665-017-6547-3
3 KUMAR A, JIGYASU D K, SUBRAHMANYAM G, et al Nickel in terrestrial biota: comprehensive review on contamination, toxicity, tolerance and its remediation approaches[J]. Chemosphere, 2021, 275: 129996
doi: 10.1016/j.chemosphere.2021.129996
4 HERRERO M, ROVIRA J, NADAL M, et al Risk assessment due to dermal exposure of trace elements and indigo dye in jeans: migration to artificial sweat[J]. Environmental Research, 2019, 172: 310- 318
doi: 10.1016/j.envres.2019.02.030
5 KHAN M A, WEN J Evaluation of physicochemical and heavy metals characteristics in surface water under anthropogenic activities using multivariate statistical methods, Garra River, Ganges Basin, India[J]. Environmental Engineering Research, 2021, 26 (6): 200280
6 LI J, HU H W, MA Y B, et al Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils[J]. Environmental Science Pollution Research, 2015, 22: 10496- 10505
doi: 10.1007/s11356-015-4232-1
7 SHAHZAD B, TANVEER M, REHMAN A, et al Nickel; whether toxic or essential for plants and environment: a review[J]. Plant Physiology Biochemistry, 2018, 132: 641- 651
doi: 10.1016/j.plaphy.2018.10.014
8 RENU K, CHAKRABORTY R, MYAKALA H, et al Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735
doi: 10.1016/j.chemosphere.2021.129735
9 GUPTA N, YADAV K K, KUMAR V, et al Evaluating heavy metals contamination in soil and vegetables in the region of North India: levels, transfer and potential human health risk analysis[J]. Environmental Toxicology Pharmacology, 2021, 82: 103563
doi: 10.1016/j.etap.2020.103563
10 EL-NAGGAR A, AHMED N, MOSA A, et al Nickel in soil and water: sources, biogeochemistry, and remediation using biochar[J]. Journal of Hazardous Materials, 2021, 419: 126421
doi: 10.1016/j.jhazmat.2021.126421
11 PYO J, HONG S M, KWON Y S, et al Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil[J]. Science of the Total Environment, 2020, 741: 140162
doi: 10.1016/j.scitotenv.2020.140162
12 SHEN Q, XIA K, ZHANG S, et al Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2019, 222: 117191
doi: 10.1016/j.saa.2019.117191
13 PALTSEVA A A, DEEB M, DI IORIO E, et al Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy[J]. Science of The Total Environment, 2022, 809: 151107
doi: 10.1016/j.scitotenv.2021.151107
14 SUN W, LIU S, ZHANG X, et al Performance of hyperspectral data in predicting and mapping zinc concentration in soil[J]. Science of the Total Environment, 2022, 824: 153766
doi: 10.1016/j.scitotenv.2022.153766
15 SUN Y, CHEN S, DAI X, et al Coupled retrieval of heavy metal nickel concentration in agricultural soil from spaceborne hyperspectral imagery[J]. Journal of Hazardous Materials, 2023, 446: 130722
doi: 10.1016/j.jhazmat.2023.130722
16 WANG Y, ZOU B, LI S, et al A hierarchical residual correction-based hyperspectral inversion method for soil heavy metals considering spatial heterogeneity[J]. Journal of Hazardous Materials, 2024, 479: 135699
doi: 10.1016/j.jhazmat.2024.135699
17 TAN K, WANG H, CHEN L, et al Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020, 382: 120987
doi: 10.1016/j.jhazmat.2019.120987
18 ZOU Z, WANG Q, WU Q, et al Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method[J]. Journal of Environmental Management, 2024, 355: 120503
doi: 10.1016/j.jenvman.2024.120503
19 WANG Y, ZHANG X, SUN W, et al Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: from ground-based and airborne data to satellite-simulated data[J]. Science of the Total Environment, 2022, 838: 156129
doi: 10.1016/j.scitotenv.2022.156129
20 LIU J, HAN J, XIE J, et al Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 226: 117639
doi: 10.1016/j.saa.2019.117639
21 WANG X, ZHAO C, LI Z, et al Modeling risk assessment of soil heavy metal pollution using partial least squares and fuzzy logic: a case study of a gully type coal-based solid waste dumpsite[J]. Environmental Pollution, 2024, 352: 124147
doi: 10.1016/j.envpol.2024.124147
22 ARIF M, QI Y, DONG Z, et al Rapid retrieval of cadmium and lead content from urban greenbelt zones using hyperspectral characteristic bands[J]. Journal of Cleaner Production, 2022, 374: 133922
doi: 10.1016/j.jclepro.2022.133922
23 ZHENG X, ZHENG P, ZHENG L, et al Multi-channel convolutional neural networks for materials properties prediction[J]. Computational Materials Science, 2020, 173: 109436
doi: 10.1016/j.commatsci.2019.109436
24 TSAKIRIDIS N L, KERAMARIS K D, THEOCHARIS J B, et al Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network[J]. Geoderma, 2020, 367: 114208
doi: 10.1016/j.geoderma.2020.114208
25 张东, 塔西甫拉提·特依拜, 张飞, 等 分数阶微分在盐渍土高光谱数据预处理中的应用[J]. 农业工程学报, 2014, 30 (24): 151- 160
ZHANG Dong, TASHPOLAT·Tiyip, ZHANG Fei, et al Application of fractional differential in preprocessing hyperspectral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (24): 151- 160
doi: 10.3969/j.issn.1002-6819.2014.24.018
26 王敬哲, 塔西甫拉提·特依拜, 张东 基于分数阶微分的荒漠土壤铬含量高光谱检测[J]. 农业机械学报, 2017, 48 (5): 152- 158
WANG Jingzhe, TASHPOLAT·Tiyip, ZHANG Dong Spectral detection of chromium content in desert soil based on fractional differential[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (5): 152- 158
doi: 10.6041/j.issn.1000-1298.2017.05.018
27 TIECHER T, MOURA-BUENO J M, CANER L, et al Improving the quantification of sediment source contributions using different mathematical models and spectral preprocessing techniques for individual or combined spectra of ultraviolet–visible, near- and middle-infrared spectroscopy[J]. Geoderma, 2021, 384: 114815
doi: 10.1016/j.geoderma.2020.114815
28 BA Y, LIU J, HAN J, et al Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 229: 117863
doi: 10.1016/j.saa.2019.117863
29 JI R, ZHAO Y, LI M, et al Research on prediction model of soil nitrogen content based on encoder-CNN[J]. Spectroscopy and Spectral Analysis, 2022, 42 (5): 1372- 1377
30 SABETIZADE M, GORJI M, ROUDIER P, et al Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region[J]. CATENA, 2021, 196: 104844
doi: 10.1016/j.catena.2020.104844
31 SUN C, XUE Z, ZHANG L, et al Local peak Savitzky-Golay for spatio-temporal reconstruction of Landsat NDVI time series: a case study over the Qinghai-Tibet Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2024, 17: 13439- 13455
doi: 10.1109/JSTARS.2024.3432797
32 TAVAKOLI H, CORREA J, SABETIZADE M, et al Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches[J]. Soil Tillage Research, 2023, 229: 105684
doi: 10.1016/j.still.2023.105684
33 WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks [C]// AAAI Workshop Papers 2015. [S.l.]: AAAI, 2015: 40–46.
34 WAN M, YAN T, XU G, et al MAE-NIR: a masked autoencoder that enhances near-infrared spectral data to predict soil properties[J]. Computers Electronics in Agriculture, 2023, 215: 108427
doi: 10.1016/j.compag.2023.108427
35 LI Y, CHEN Z, ZHANG F, et al Research on detection of potato varieties based on spectral imaging analytical algorithm[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2024, 311: 123966
doi: 10.1016/j.saa.2024.123966
36 LI Y, SUN H, ZHENG Y, et al Combined gramian angular difference field image coding and improved mobile vision transformer for determination of apple soluble solids content by Vis-NIR spectroscopy[J]. Journal of Food Composition Analysis, 2024, 131: 106200
doi: 10.1016/j.jfca.2024.106200
37 CHEN X, LIU H, LI J, et al A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques[J]. Ecological Informatics, 2022, 71: 101808
doi: 10.1016/j.ecoinf.2022.101808
38 SUJATHA R, CHATTERJEE J M, JHANJHI N, et al. Performance of deep learning vs machine learning in plant leaf disease detection [J]. Microprocessors Microsystems 2021, 80: 103615.
39 LU B, TIAN F, CHEN C, et al Identification of Chinese red wine origins based on Raman spectroscopy and deep learning[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2023, 291: 122355
doi: 10.1016/j.saa.2023.122355
40 李运堂, 李恒杰, 张坤, 等 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1133- 1141
LI Yuntang, LI Hengjie, ZHANG Kun, et al Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1133- 1141
41 陈思羽, 朱红媛, 于添, 等 基于Opt-MobileNetV3的大豆种子异常籽粒识别研究[J]. 农业机械学报, 2023, 54 (Suppl. 2): 359- 365
CHEN Siyu, ZHU Hongyuan, WANG Junfa, et al Abnormal soybean grains recognition based on Opt-MobileNetV3[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (Suppl. 2): 359- 365
42 夏芳, 彭杰, 王乾龙, 等 基于省域尺度的农田土壤重金属高光谱预测[J]. 红外与毫米波学报, 2015, 34 (5): 593- 599
XIA Fang, PENG Jie, WANG Qianlong, et al Prediction of heavy metal content in soil of cultivated land: hyperspectral technology at provincial scale[J]. Journal of Infrared and Millimeter Waves, 2015, 34 (5): 593- 599
doi: 10.11972/j.issn.1001-9014.2015.05.014
[1] 王福建,张泽天,陈喜群,王殿海. 基于多通道图聚合注意力机制的共享单车借还量预测[J]. 浙江大学学报(工学版), 2025, 59(9): 1986-1995.
[2] 段继忠,李海源. 基于变分模型和Transformer的多尺度并行磁共振成像重建[J]. 浙江大学学报(工学版), 2025, 59(9): 1826-1837.
[3] 张弘,张学成,王国强,顾潘龙,江楠. 基于三维视觉的软体机器人实时定位与控制[J]. 浙江大学学报(工学版), 2025, 59(8): 1574-1582.
[4] 魏新雨,饶蕾,范光宇,陈年生,程松林,杨定裕. 用于无人机遥感图像的高精度实时语义分割网络[J]. 浙江大学学报(工学版), 2025, 59(7): 1411-1420.
[5] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[6] 章东平,王大为,何数技,汤斯亮,刘志勇,刘中秋. 基于跨维度特征融合的航空发动机寿命预测[J]. 浙江大学学报(工学版), 2025, 59(7): 1504-1513.
[7] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[8] 王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
[9] 徐慧智,王秀青. 基于车辆图像特征的前车距离与速度感知[J]. 浙江大学学报(工学版), 2025, 59(6): 1219-1232.
[10] 张梦瑶,周杰,李文婷,赵勇. 结合全局信息和局部信息的三维网格分割框架[J]. 浙江大学学报(工学版), 2025, 59(5): 912-919.
[11] 陈赞,李冉,冯远静,李永强. 基于时间维超分辨率的视频快照压缩成像重构[J]. 浙江大学学报(工学版), 2025, 59(5): 956-963.
[12] 马莉,王永顺,胡瑶,范磊. 预训练长短时空交错Transformer在交通流预测中的应用[J]. 浙江大学学报(工学版), 2025, 59(4): 669-678.
[13] 钱新宇,谢清林,陶功权,温泽峰. 基于多结构数据驱动的车轮扁疤定量识别方法[J]. 浙江大学学报(工学版), 2025, 59(4): 688-697.
[14] 陈巧红,郭孟浩,方贤,孙麒. 基于跨模态级联扩散模型的图像描述方法[J]. 浙江大学学报(工学版), 2025, 59(4): 787-794.
[15] 顾正宇,赖菲菲,耿辰,王希明,戴亚康. 基于知识引导的缺血性脑卒中梗死区分割方法[J]. 浙江大学学报(工学版), 2025, 59(4): 814-820.