| 信息与通信工程 |
|
|
|
|
| 基于多通道卷积方式的土壤重金属镍含量定量预测 |
付承彪1( ),庄清源1,田安红2,1,*( ) |
1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650504 2. 昆明理工大学 国土资源工程学院,云南 昆明 650093 |
|
| Quantitative prediction of soil heavy metal nickel content based on multi-channel convolution method |
Chengbiao FU1( ),Qingyuan ZHUANG1,Anhong TIAN2,1,*( ) |
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China 2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China |
| 1 |
PANAGOPOULOS I, KARAYANNIS A, KOLLIAS K, et al Investigation of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area[J]. Journal of Hazardous Materials, 2015, 281: 20- 26
doi: 10.1016/j.jhazmat.2014.07.040
|
| 2 |
KHAN M Y A, GANI K M, CHAKRAPANI G J Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of River Ganges, India[J]. Environmental Earth Sciences, 2017, 76 (5): 231
doi: 10.1007/s12665-017-6547-3
|
| 3 |
KUMAR A, JIGYASU D K, SUBRAHMANYAM G, et al Nickel in terrestrial biota: comprehensive review on contamination, toxicity, tolerance and its remediation approaches[J]. Chemosphere, 2021, 275: 129996
doi: 10.1016/j.chemosphere.2021.129996
|
| 4 |
HERRERO M, ROVIRA J, NADAL M, et al Risk assessment due to dermal exposure of trace elements and indigo dye in jeans: migration to artificial sweat[J]. Environmental Research, 2019, 172: 310- 318
doi: 10.1016/j.envres.2019.02.030
|
| 5 |
KHAN M A, WEN J Evaluation of physicochemical and heavy metals characteristics in surface water under anthropogenic activities using multivariate statistical methods, Garra River, Ganges Basin, India[J]. Environmental Engineering Research, 2021, 26 (6): 200280
|
| 6 |
LI J, HU H W, MA Y B, et al Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils[J]. Environmental Science Pollution Research, 2015, 22: 10496- 10505
doi: 10.1007/s11356-015-4232-1
|
| 7 |
SHAHZAD B, TANVEER M, REHMAN A, et al Nickel; whether toxic or essential for plants and environment: a review[J]. Plant Physiology Biochemistry, 2018, 132: 641- 651
doi: 10.1016/j.plaphy.2018.10.014
|
| 8 |
RENU K, CHAKRABORTY R, MYAKALA H, et al Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735
doi: 10.1016/j.chemosphere.2021.129735
|
| 9 |
GUPTA N, YADAV K K, KUMAR V, et al Evaluating heavy metals contamination in soil and vegetables in the region of North India: levels, transfer and potential human health risk analysis[J]. Environmental Toxicology Pharmacology, 2021, 82: 103563
doi: 10.1016/j.etap.2020.103563
|
| 10 |
EL-NAGGAR A, AHMED N, MOSA A, et al Nickel in soil and water: sources, biogeochemistry, and remediation using biochar[J]. Journal of Hazardous Materials, 2021, 419: 126421
doi: 10.1016/j.jhazmat.2021.126421
|
| 11 |
PYO J, HONG S M, KWON Y S, et al Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil[J]. Science of the Total Environment, 2020, 741: 140162
doi: 10.1016/j.scitotenv.2020.140162
|
| 12 |
SHEN Q, XIA K, ZHANG S, et al Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2019, 222: 117191
doi: 10.1016/j.saa.2019.117191
|
| 13 |
PALTSEVA A A, DEEB M, DI IORIO E, et al Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy[J]. Science of The Total Environment, 2022, 809: 151107
doi: 10.1016/j.scitotenv.2021.151107
|
| 14 |
SUN W, LIU S, ZHANG X, et al Performance of hyperspectral data in predicting and mapping zinc concentration in soil[J]. Science of the Total Environment, 2022, 824: 153766
doi: 10.1016/j.scitotenv.2022.153766
|
| 15 |
SUN Y, CHEN S, DAI X, et al Coupled retrieval of heavy metal nickel concentration in agricultural soil from spaceborne hyperspectral imagery[J]. Journal of Hazardous Materials, 2023, 446: 130722
doi: 10.1016/j.jhazmat.2023.130722
|
| 16 |
WANG Y, ZOU B, LI S, et al A hierarchical residual correction-based hyperspectral inversion method for soil heavy metals considering spatial heterogeneity[J]. Journal of Hazardous Materials, 2024, 479: 135699
doi: 10.1016/j.jhazmat.2024.135699
|
| 17 |
TAN K, WANG H, CHEN L, et al Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020, 382: 120987
doi: 10.1016/j.jhazmat.2019.120987
|
| 18 |
ZOU Z, WANG Q, WU Q, et al Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method[J]. Journal of Environmental Management, 2024, 355: 120503
doi: 10.1016/j.jenvman.2024.120503
|
| 19 |
WANG Y, ZHANG X, SUN W, et al Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: from ground-based and airborne data to satellite-simulated data[J]. Science of the Total Environment, 2022, 838: 156129
doi: 10.1016/j.scitotenv.2022.156129
|
| 20 |
LIU J, HAN J, XIE J, et al Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 226: 117639
doi: 10.1016/j.saa.2019.117639
|
| 21 |
WANG X, ZHAO C, LI Z, et al Modeling risk assessment of soil heavy metal pollution using partial least squares and fuzzy logic: a case study of a gully type coal-based solid waste dumpsite[J]. Environmental Pollution, 2024, 352: 124147
doi: 10.1016/j.envpol.2024.124147
|
| 22 |
ARIF M, QI Y, DONG Z, et al Rapid retrieval of cadmium and lead content from urban greenbelt zones using hyperspectral characteristic bands[J]. Journal of Cleaner Production, 2022, 374: 133922
doi: 10.1016/j.jclepro.2022.133922
|
| 23 |
ZHENG X, ZHENG P, ZHENG L, et al Multi-channel convolutional neural networks for materials properties prediction[J]. Computational Materials Science, 2020, 173: 109436
doi: 10.1016/j.commatsci.2019.109436
|
| 24 |
TSAKIRIDIS N L, KERAMARIS K D, THEOCHARIS J B, et al Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network[J]. Geoderma, 2020, 367: 114208
doi: 10.1016/j.geoderma.2020.114208
|
| 25 |
张东, 塔西甫拉提·特依拜, 张飞, 等 分数阶微分在盐渍土高光谱数据预处理中的应用[J]. 农业工程学报, 2014, 30 (24): 151- 160 ZHANG Dong, TASHPOLAT·Tiyip, ZHANG Fei, et al Application of fractional differential in preprocessing hyperspectral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (24): 151- 160
doi: 10.3969/j.issn.1002-6819.2014.24.018
|
| 26 |
王敬哲, 塔西甫拉提·特依拜, 张东 基于分数阶微分的荒漠土壤铬含量高光谱检测[J]. 农业机械学报, 2017, 48 (5): 152- 158 WANG Jingzhe, TASHPOLAT·Tiyip, ZHANG Dong Spectral detection of chromium content in desert soil based on fractional differential[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (5): 152- 158
doi: 10.6041/j.issn.1000-1298.2017.05.018
|
| 27 |
TIECHER T, MOURA-BUENO J M, CANER L, et al Improving the quantification of sediment source contributions using different mathematical models and spectral preprocessing techniques for individual or combined spectra of ultraviolet–visible, near- and middle-infrared spectroscopy[J]. Geoderma, 2021, 384: 114815
doi: 10.1016/j.geoderma.2020.114815
|
| 28 |
BA Y, LIU J, HAN J, et al Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2020, 229: 117863
doi: 10.1016/j.saa.2019.117863
|
| 29 |
JI R, ZHAO Y, LI M, et al Research on prediction model of soil nitrogen content based on encoder-CNN[J]. Spectroscopy and Spectral Analysis, 2022, 42 (5): 1372- 1377
|
| 30 |
SABETIZADE M, GORJI M, ROUDIER P, et al Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region[J]. CATENA, 2021, 196: 104844
doi: 10.1016/j.catena.2020.104844
|
| 31 |
SUN C, XUE Z, ZHANG L, et al Local peak Savitzky-Golay for spatio-temporal reconstruction of Landsat NDVI time series: a case study over the Qinghai-Tibet Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2024, 17: 13439- 13455
doi: 10.1109/JSTARS.2024.3432797
|
| 32 |
TAVAKOLI H, CORREA J, SABETIZADE M, et al Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches[J]. Soil Tillage Research, 2023, 229: 105684
doi: 10.1016/j.still.2023.105684
|
| 33 |
WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks [C]// AAAI Workshop Papers 2015. [S.l.]: AAAI, 2015: 40–46.
|
| 34 |
WAN M, YAN T, XU G, et al MAE-NIR: a masked autoencoder that enhances near-infrared spectral data to predict soil properties[J]. Computers Electronics in Agriculture, 2023, 215: 108427
doi: 10.1016/j.compag.2023.108427
|
| 35 |
LI Y, CHEN Z, ZHANG F, et al Research on detection of potato varieties based on spectral imaging analytical algorithm[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2024, 311: 123966
doi: 10.1016/j.saa.2024.123966
|
| 36 |
LI Y, SUN H, ZHENG Y, et al Combined gramian angular difference field image coding and improved mobile vision transformer for determination of apple soluble solids content by Vis-NIR spectroscopy[J]. Journal of Food Composition Analysis, 2024, 131: 106200
doi: 10.1016/j.jfca.2024.106200
|
| 37 |
CHEN X, LIU H, LI J, et al A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques[J]. Ecological Informatics, 2022, 71: 101808
doi: 10.1016/j.ecoinf.2022.101808
|
| 38 |
SUJATHA R, CHATTERJEE J M, JHANJHI N, et al. Performance of deep learning vs machine learning in plant leaf disease detection [J]. Microprocessors Microsystems 2021, 80: 103615.
|
| 39 |
LU B, TIAN F, CHEN C, et al Identification of Chinese red wine origins based on Raman spectroscopy and deep learning[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2023, 291: 122355
doi: 10.1016/j.saa.2023.122355
|
| 40 |
李运堂, 李恒杰, 张坤, 等 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1133- 1141 LI Yuntang, LI Hengjie, ZHANG Kun, et al Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1133- 1141
|
| 41 |
陈思羽, 朱红媛, 于添, 等 基于Opt-MobileNetV3的大豆种子异常籽粒识别研究[J]. 农业机械学报, 2023, 54 (Suppl. 2): 359- 365 CHEN Siyu, ZHU Hongyuan, WANG Junfa, et al Abnormal soybean grains recognition based on Opt-MobileNetV3[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (Suppl. 2): 359- 365
|
| 42 |
夏芳, 彭杰, 王乾龙, 等 基于省域尺度的农田土壤重金属高光谱预测[J]. 红外与毫米波学报, 2015, 34 (5): 593- 599 XIA Fang, PENG Jie, WANG Qianlong, et al Prediction of heavy metal content in soil of cultivated land: hyperspectral technology at provincial scale[J]. Journal of Infrared and Millimeter Waves, 2015, 34 (5): 593- 599
doi: 10.11972/j.issn.1001-9014.2015.05.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|