Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 976-983    DOI: 10.3785/j.issn.1008-973X.2021.05.018
材料与化学工程     
木质素单体模化物的热解与产物分析
杨华美(),李靖,堵锡华
徐州工程学院 材料与化学工程学院,江苏 徐州 221018
Pyrolysis and product analysis of lignin monomer model compounds
Hua-mei YANG(),Jing LI,Xi-hua DU
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
 全文: PDF(1252 KB)   HTML
摘要:

采用苯酚、邻苯二酚、愈创木酚和紫丁香酚为木质素单体模化物,利用两段裂解反应器-在线气相色谱仪(GCs)进行热解实验和产物分析,采用多色谱柱对无机气体(IGs)、C1~C5烃(C1~C5 LHs)、非芳基含氧化合物、酚和芳烃进行定量分析,以确定羟基和甲氧基对木质素热解过程中开环反应及产物分布的影响. 结果显示:羟基和甲氧基可以提高模化物的转化率,且羟基和甲氧基的存在影响芳基开环反应、芳基取代反应和重排反应间的竞争关系,使热解产物分布存在明显差异. 4种模化物热解产物主要是芳环的开环反应产物,包括IGs(质量分数为27.29%~33.56%)和C1~C5烃(20.46%~39.51%). 一氧化碳产率(23.82%~29.18%)随羟基数增加而升高,随甲氧基数增加而降低;二氧化碳产率(0.19%~9.61%)随甲氧基数增加而升高. 羟基和甲氧基的存在降低了C1~C5烃的质量选择性,促进了烷基苯、大分子化合物和焦炭的形成.

关键词: 木质素单体模化物热解开环反应C1~C5    
Abstract:

Phenol, catechol, guaiacol and syringol, as lignin monomer model compounds, were pyrolyzed in a two-stage tubular reactor, and pyrolysis products were quantified by on-line gas chromatography (GCs). Inorganic gases (IGs), C1~C5 hydrocarbons (C1~C5 LHs), non-aryl oxygen-containing compound, phenols and aromatic hydrocarbon were quantified by GC. The purpose is to determine the effect of hydroxyl and methoxy on the ring-opening reaction of aromatic ring and product distribution during lignin pyrolysis process. Results show that hydroxyl and methoxy can improve the model compound conversion rate, and the existence of hydroxyl and methoxy affects the competition of aryl ring opening reaction, aryl substitution reaction and rearrangement reaction, leading to the obvious products distribution differences in the model compounds pyrolysis. The main products are formed from the ring-opening reaction, including IGs (mass fraction of 27.29%~33.56%) and C1~C5 LHs (20.46%~39.51%). The CO yield (23.82%~29.18%) is improved by hydroxyl, and reduced by methoxy. Methoxy enhances the CO2 formation with its yield in 0.19%~9.61%. Hydroxyl and methoxy reduce the mass selectivity of C1~ C5 hydrocarbon, but promote the formation of alkyl benzene, macromolecular compounds and coke.

Key words: lignin    monomer model compound    pyrolysis    ring-opening reaction    C1~C5 hydrocarbons
收稿日期: 2020-04-29 出版日期: 2021-06-10
CLC:  TK 6  
基金资助: 国家自然科学基金青年基金资助项目(21703194);江苏省自然科学基金资助项目(BK20190156);江苏省高校自然科学研究基金资助项目(18KJB480008);徐州市应用基础研究计划资助项目(KC19048)
作者简介: 杨华美(1987—),女,讲师,博士,从事碳质资源的高效转化利用研究. orcid.org/0000-0003-2697-7250. E-mail: yhmcumt@yeah.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨华美
李靖
堵锡华

引用本文:

杨华美,李靖,堵锡华. 木质素单体模化物的热解与产物分析[J]. 浙江大学学报(工学版), 2021, 55(5): 976-983.

Hua-mei YANG,Jing LI,Xi-hua DU. Pyrolysis and product analysis of lignin monomer model compounds. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 976-983.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.018        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/976

图 1  两段式裂解反应器-在线气相色谱仪示意图
设备 色谱柱 检测器 条件设置 检测产物
岛津
GC-2014
Gaskuropack 54
长度:4 m
(Packed column,GL Sciences)
FID/TCD 进样口:200 ℃
检测器:220 ℃
TCD 电流:110 mA
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到200 ℃,并保持30 min
FID:甲烷、乙烷、乙烯、乙炔、丙烷、丙烯、丙炔、苯、甲醇、乙醇
TCD:一氧化碳(CO)、二氧化碳(CO2)、水(H2O)
岛津
GC-2014
VZN-1
长度:4 m
(Packed column,Alltech)
TCD 进样口:60 ℃
检测器:60 ℃
TCD 电流:110 mA
色谱柱温度:恒温40 ℃
乙炔、丙二烯、氢气
岛津
GC-2010
PoraBOND
长度:25 m(0.25 mm i.d.)
(Capillary column,Varian)
FID 进样口:345 ℃
检测器:300 ℃
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到300 ℃,并保持30 min
甲烷、乙烷、丁烷、1-丁烯、2-丁烯、1,3-丁二烯、1-丁烯-3-炔、环戊二烯、1,4-戊二烯、1,2-戊二烯、己二烯、2-呋喃甲醛、呋喃、丙酮、乙酸、乙醛、苯酚、苯、甲苯、苯乙烯、乙基苯、萘、蒽、菲
岛津
GC-2010
TC-1701
长度:60 m(0.25 mm i.d.)(capillary column,GL Sciences)
FID 进样口:345 ℃
检测器:300 ℃
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到300 ℃,并保持30 min
苯、二甲基苯、茚、萘、甲基萘、苯酚、甲基苯酚、愈创木酚、紫丁香酚、邻苯二酚
表 1  在线GC条件设置及检测产物
图 2  木质素模化物在750 ℃下热解所得各类产物的质量选择性
图 3  木质素模化物热解所得酚类化合物的质量选择性
图 4  木质素模化物热解所得CO和CO2的质量选择性
图 5  木质素模化物热解所得C1~C5烃的质量选择性
图 6  木质素模化物热解所得非芳基含氧化合物的质量选择性
图 7  木质素模化物热解所得芳烃的质量选择性
1 SAHA A, BASAK B B Scope of value addition and utilization of residual biomass from medicinal and aromatic plants[J]. Industrial Crops and Products, 2020, 145: 111979
doi: 10.1016/j.indcrop.2019.111979
2 KUMAR R, STREZOV V, WELDEKIDAN H, et al Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763
doi: 10.1016/j.rser.2020.109763
3 JEGERS H E, KLEIN M T Primary and secondary lignin pyrolysis reaction pathways[J]. Journal of Industrial and Engineering Chemistry, 1985, 24: 173- 183
4 杨义. 生物质催化热解和定向调控制取高品位液体燃料的研究[D]. 杭州: 浙江大学, 2019.
YANG Yi. Research on catalytic pyrolysis of biomass to advanced liquid fuel[D]. Hangzhou: Zhejiang University, 2019.
5 HUANG Y, LIU S, ZHANG J, et al Volatile-char interactions during biomass pyrolysis: cleavage of C?C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube[J]. Bioresource Technology, 2020, 307: 123192
6 JIANG G Z, NOWAKOWSKI D J, BRIDGWATER A V Effect of the temperature on the composition of lignin pyrolysis products[J]. Energy and Fuels, 2010, 24: 4470- 4475
doi: 10.1021/ef100363c
7 ZHANG M, RESENDE F L P, MOUTSOGLOU A, et al Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65- 71
doi: 10.1016/j.jaap.2012.05.009
8 衣雪. 生物质热解气相产物析出特性及本征动力学研究[D]. 吉林: 东北电力大学, 2019.
YI Xue. Study on precipitation characteristics and intrinsic kinetics of biomass pyrolysis gas products[D]. Jilin: Northeast Electric Power University, 2019.
9 HUANG Y, GAO Y X, ZHOU H, et al Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77- 82
doi: 10.1016/j.biortech.2018.10.006
10 ZHOU S, GARCIA-PEREZ M, PECHA B, et al Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood[J]. Energy and Fuel, 2013, 27: 1428- 1438
doi: 10.1021/ef3019832
11 RANZI E, CUOCI A, FARAVELLI T, et al Chemical kinetics of biomass pyrolysis[J]. Energy and Fuel, 2008, 22: 4292- 4300
doi: 10.1021/ef800551t
12 FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, et al Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass and Bioenergy, 2010, 34: 290- 301
doi: 10.1016/j.biombioe.2009.10.018
13 YANG H M, APPARIA S, KUDO S, et al Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Industrial and Engineering Chemistry Research, 2015, 54 (27): 6855- 6864
doi: 10.1021/acs.iecr.5b01289
14 XU Z F, LIN M C Ab initio kinetics for the unimolecular reaction C6H5OH $ \xrightarrow[{\;\;\;\;\;\;\;\;}]{} $ CO+C5H6[J]. Journal of Physical Chemistry A, 2006, 110: 1672- 1677
doi: 10.1021/jp055241d
15 ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals[J]. Journal of Physical Chemistry A, 2010, 114: 1098- 1108
doi: 10.1021/jp9091706
16 KHACHATRYAN L, ASATRYAN R, MCFERRIN C, et al Radicals from the gas-phase pyrolysis of catechol. 2. comparison of the pyrolysis of catechol and hydroquinone[J]. Journal of Physical Chemistry A, 2010, 114: 10110- 10116
doi: 10.1021/jp1054588
17 ALTARAWNEH M, DLUGOGORSKI Z, KENNEDY E M, et al Theoretical study of unimolecular decomposition of catechol[J]. Journal of Physical Chemistry A, 2010, 114: 1060- 1067
doi: 10.1021/jp909025s
18 KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al Radicals from the gas-phase pyrolysis of catechol: 1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114: 2306- 2312
doi: 10.1021/jp908243q
19 CUSTODIS V B F, HEMBERGER P, MA Z Q, et al Mechanism of fast pyrolysis of lignin: studying model compounds[J]. Journal of Physical Chemistry B, 2014, 118: 8524- 8531
doi: 10.1021/jp5036579
20 ROBICHAUD D J, SCHEER A M, MUKARAKATE C, et al Unimolecular thermal decomposition of dimethoxy benzenes[J]. Journal of Physical Chemistry A, 2014, 140 (23): 234302
doi: 10.1063/1.4879615
21 LIU C, ZHANG Y Y, HUANG X L Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159- 165
doi: 10.1016/j.fuproc.2014.01.002
22 SCHEER A M, MUKARAKATE C, ROBICHAUD D J, et al Unimolecular thermal decomposition of phenol and d(5)-phenol: direct observation of cyclopentadiene formation via cyclohexadienone[J]. Journal of Physical Chemistry A, 2012, 136 (4): 44309
doi: 10.1063/1.3675902
23 YANG H M, FURUTANI Y, KUDO S, et al Experimental investigation of thermal decomposition of dihydroxybenzene isomers: catechol, hydroquinone, and resorcinol[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 321- 329
doi: 10.1016/j.jaap.2016.05.019
24 LEDESMA E B, HOANG J N, NGUYEN Q, et al Unimolecular decomposition pathway for the vapor-phase cracking of eugenol, a biomass tar compound[J]. Energy and Fuel, 2013, 27: 6839- 6846
doi: 10.1021/ef401760c
25 ASMADI M, KAWAMOTO H, SAKA S Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 76- 87
doi: 10.1016/j.jaap.2011.04.012
26 ASMADI M, KAWAMOTO H, SAKA S Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88- 98
doi: 10.1016/j.jaap.2011.04.011
27 CHU S, SUBRAHMANYAM A V, HUBER G W The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15: 125- 136
doi: 10.1039/C2GC36332A
28 BESTE A, BUCHANAN A C Role of carbon-carbon phenyl migration in the pyrolysis mechanism of beta-O-4 lignin model compounds: phenethyl phenyl ether and alpha-hydroxy phenethyl phenyl ether[J]. Journal of Physical Chemistry A, 2012, 116: 12242- 12248
doi: 10.1021/jp3104694
29 NORINAGA K, DEUTSCHMANN O Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons[J]. Industrial and Engineering Chemistry Research, 2007, 46: 3547- 3557
doi: 10.1021/ie061207p
30 NORINAGA K, DEUTSCHMANN O, SAEGUSA N, et al Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86: 148- 160
doi: 10.1016/j.jaap.2009.05.001
31 NOWAKOWSKA M, HERBINET O, DUFOUR A, et al Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification[J]. Combustion and Flame, 2014, 161: 1474- 1488
doi: 10.1016/j.combustflame.2013.11.024
[1] 朱凯,王云鹤,秦雪薇,黄亚东,王强,吴珂. 升温速率对沥青燃烧和气态产物释放特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1805-1811.
[2] 山石泉,周志军,匡建平,张煜,岑可法. 褐煤在N2及CO2气氛下的热解与富氧燃烧特性[J]. 浙江大学学报(工学版), 2019, 53(9): 1826-1834.
[3] 李晓洁,岑建孟,夏芝香,方梦祥,王涛,王勤辉,骆仲泱. 松木屑与煤加压热解特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1298-1305.
[4] 邢江宽,王海鸥,罗坤,白云,樊建人. 预测生物质热解动力学参数的随机森林模型[J]. 浙江大学学报(工学版), 2019, 53(3): 605-612.
[5] 汪岸, 骆仲泱, 方梦祥, 岑建孟, 姚鹏. 煤热解沥青炭化程度对KOH活化制备活性炭孔隙结构的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1551-1557.
[6] 柳佳佳, 岑建孟, 方梦祥, 陈泉霖. 不同气体成分下高温直流放电特性[J]. 浙江大学学报(工学版), 2018, 52(5): 971-979.
[7] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[8] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[9] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[10] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[11] 孙强,张彦威,李谦,王智化,葛立超,周志军,岑可法. 褐煤快速热解半焦理化特性及气化活性[J]. 浙江大学学报(工学版), 2016, 50(11): 2045-2051.
[12] 龚俊辉, 陈怡璇, 李劲, 周洋. PMMA表面与深度吸收热解过程数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1879-1888.
[13] 潘志娟, 黄群星, Moussa-Mallaye Alhadj-Mallah, 王君, 池涌, 严建华. 活性炭对储运油泥微波热解特性的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1166-1172.
[14] 周慧龙,肖刚,吴荣兵,黄磊,倪明江,高翔,岑可法. 炭化温度对木质素导电炭石墨化结构的影响[J]. 浙江大学学报(工学版), 2014, 48(11): 2066-2071.
[15] 丁宽,仲兆平,张波,刘志超. 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 2014, 48(11): 2053-2060.