Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
催化剂对CH4气氛下的煤热解特性的影响
倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱
浙江大学 能源清洁利用国家重点实验室,浙江 杭州310027
Influence of catalyst on coal pyrolysis during CH4 atmosphere
NI Ming jiang, ZHAO Le, FANG Meng xiang, LI Min, LI Chao,WANG Qin hui, LUO Zhong yang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(732 KB)   HTML
摘要:
采用3种活化CH4的方式,利用管式炉分别考察了在CH4气氛下添加H2、Ni/Al2O3、Mo/HZSM 5这3种物质对煤热解特性的影响.结果表明,相比于N2气氛,CH4气氛下热解产生的焦油增多,焦油中杂原子化合物减少,半焦中硫、氮质量分数降低.在CH4气氛中添加3种物质均能使热解时产生的焦油品质提高.添加H2使得热解的气体产率(体积)增加,半焦产率降低,但半焦的元素成分无明显变化;添加Ni/Al2O3使得气体产率增加,焦油中轻质组分增多,半焦中的硫含量降低、氮含量增高.添加Mo/HZSM 5使得气体产率下降,焦油中芳香族化合物增多,半焦的碳缩聚程度加深.
Abstract:
CH4 was activated in three different ways. The effects of H2, Ni/Al2O3 or Mo/HZSM 5 on coal pyrolysis characters were respectivelv investigated in a tube furnace under CH4 atmosphere. Results show that, compared with coal pyrolysis products under N2 atmosphere, coal tar yield increases during CH4 atmosphere, along with heteroatomic compounds in tar, sulfur and nitrogen content in char decreasing. In the process of coal pyrolysis, adding H2, Ni/Al2O3 or Mo/HZSM 5 into CH4 atmosphere can all improve the tar quality. With H2 in CH4 atmosphere, gas yield (volume) increases, char yield reduces with no obvious effects on char elementary composition. With Ni/Al2O3 catalyst, gas yield and the proportion of light components in tar both increase, sulfur content in char decreases while nitrogen content increases. With Mo/HZSM 5 catalyst, more aromatic compounds in tar are generated. Gas yield decreases, and the degree of carbon polycondensations in coal pyrolysis is strengthened.
出版日期: 2016-02-01
:  TQ 530.2  
基金资助:

国家“863”高技术研究发展计划资助项目(2013AA051203);国际合作资助项目(2011DFR60190);高等学校学科创新引智计划资助项目(B08026).

作者简介: 倪明江(1949—),男,教授,博导,从事干洁净煤技术、太阳能利用技术以及废弃物焚烧技术等研究.ORCID 0000 0003 1460 8060. E-mail: mjn@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.017.

NI Ming jiang, ZHAO Le, FANG Meng xiang, LI Min, LI Chao,WANG Qin hui, LUO Zhong yang. Influence of catalyst on coal pyrolysis during CH4 atmosphere. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.017.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.017        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/320

[1] 张宗飞. 煤热解多联产技术述评[J]. 化肥设计, 2010, 48(6): 12-15.
ZHANG Zong fei. General description for coal pyrolysis poly generation technology [J]. Chemical Fertilizer Design, 2010, 48(6): 12-15.
[2] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2008: 1-16.
[3] 胡源, 冯立斌.我国煤热解多联产技术的发展概况[J]. 能源研究与信息, 2013, 29(2): 63-66.
HU Yuan, FENG Li bin. Development of the poly generation technology based on coal pyrolysis in China [J]. Energy Research and Information, 2013, 29(2): 63-66.
[4] 方梦祥, 岑建孟, 石振晶, 等. 75t/h循环流化床多联产装置试验研究[J]. 中国电机工程学报, 2010, 30(29): 9-15.
FANG Meng xiang, CEN Jian meng, SHI Zhen jing, et al. Experimental study on 75t/h circulating fluidized bed poly generation system [J]. Proceedings of the CSEE, 2010, 30(29): 9-15.
[5] 杨小彦, 杨军, 夏海斌. 低阶煤热解増油技术的研究现状与趋势[J]. 广州化工, 2012, 40(13): 35-37.
YANG Xiao yan, YANG Jun, XIA Hai bin. Increasing oil technology status and trens of low rank coal pyrolysis [J]. Guangzhou Chemical Industry, 2012, 40(13): 35-37.
[6] 钟梅, 马凤云. 不同气氛下煤连续热解产物的分配规律及产品品质分析[J]. 燃料化学学报, 2013, 41(12): 1428-1436.
ZHONG Mei, MA Feng yun. Analysis of product distribution and quality for continuous pyrolysis of coal in different atmospheres [J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1428-1436.
[7] 张晓方, 金玲, 熊燃, 等. 热解气氛对流化床煤热解制油的影响[J]. 化工学报, 2009(09): 2299-2307.
ZHANG Xiao fang, JIN Ling, XIONG Ran, et al. Effect of reaction atmosphere on tar production from coal pyrolysis in fluidized bed reactor [J]. Journal of Fuel Chemistry and Technology, 2009(09): 2299-2307.
[8] 马燕星. 陕北锦界煤和府谷煤的催化加氢热解研究[D]. 西安: 西北大学, 2011.
MA Yan xing. Study on catalytic hydropyrolysis of JJ coal and FG coal from Shanbei Region [D]. Xian: Northwest University, 2011.
[9] NELSON P F, TYLER R J. Catalytic reactions of products from the rapid hydropyrolysis of coal at atmospheric pressure [J]. Energy and Fuels, 1989. 3(4): 488-494.
[10] TAKARADA T, ONOYAMA Y, TAKAYAMA K, et al. Hydropyrolysis of coal in a pressurized powder particle fluidized bed using several catalysts [J]. Catalysis Today, 1997, 39(1): 127-136.
[11] QIN Z, MAIER W F. Coal pyrolysis in the presence of methane [J]. Energy & Fuels, 1994, 8(5): 1033-1038.
[12] WANG P, JIN L, LIU J, et al. Analysis of coal tar derived from pyrolysis at different atmospheres [J]. Fuel, 2013(104): 14-21.
[13] 罗鸣, 张建民, 高梅衫. 煤与天然气的高温共热解研究[J]. 煤炭科学技术, 2006, 34(5): 56-60.
LUO Ming, ZHANG Jian min, GAO Mei shan. Research on co pyrolysis behavior of coal and natural gas [J]. Coal Science and Technology, 2006, 34(5): 56-60.
[14] CYPRES R, FURFARI S. Low temperature hydropyrolysis of coal under pressure of H2 CH4 mixtures [J]. Fuel, 1982, 61(8): 721-724.
[15] 李保庆. 我国煤加氢热解研究III神府煤加氢、催化加氢及H2 CH4气氛下热解的研究[J]. 燃料化学学报, 1995, 23(2): 192-197.
LI Bao qing. Hydropyrolysis of Chinese coals III Catalytic and non catalytic hydropyrolysis and pyrolysis under H2 CH4 of Shenfu bituminous coal [J]. Journal of Fuel Chemistry and Technology, 1995, 23(2): 192-197.
[16] 廖洪强,孙成功,李保庆.煤、焦炉气共热解特性研究: 热解焦油分析[J]. 燃料化学学报, 1998. 26(1): 7-12.
LIAO Hong qiang, SUN Cheng gong, LI Bao qing. Co pyrolysis of coal with coke oven gas: Analysis of tar [J]. Journal of Fuel Chemistry and Technology, 1998. 26(1): 7-12.
[17] LI J J, ZHOU X, HE X F, et al. Integrated coal pyrolysis with methane over MoHZSM 5 for improving tar yield [J]. Fuel, 2013, 114: 187-190.
[18] 于丽华, 黄伟, 谢克昌. 甲烷活化机理研究进展[J]. 天然气化工, 2003,28(1): 26-30.
YU Li hua, HUANG Wei, XIE Ke chang. Development of the study on methane activation mechanism [J]. Nature Gas Chemical Industry, 2003(01): 26-30.
[19] LIU J H, HU H Q, JIN L J, et al. Integrated coal pyrolysis with CO2 reforming of methane over Ni MgO catalyst for improving tar yield [J]. Fuel Process Technology, 2010,91(91): 419-423.
[20] WANG L S, TAO L X, XIE M S, et al. Dehydrogenation and aromatization of methane under non oxidizing conditions [J]. Catal1 Lett1, 1993, 21(1/ 2): 35-41.
[21] WANG D J, LUNSFORD J H, ROSYNEK M P. Aracterization of a Mo/HZSM 5 catalyst for the conversion of methane to benzene [J]. Catalysis Today, 1997, 169(1): 347-358.
[22] ZHANG J Z, LONG M A, HOWE R F. Molybdenum ZSM 5 zeolite catalysts for the conversion of methane to benzene [J]. Catalysis Today, 1998, 44 (14): 293-300.
[23] 王鹏飞. 煤热解与甲烷二氧化碳重整耦合过程中焦油的形成机理及组成分析[D]. 大连: 大连理工大学, 2011.
WANG Peng fei. Formation mechanism and analysis of tar from an integrated process of coal pyrolysis with CO2 reforming of methane [D]. Dalian: Dalian University of Technology, 2011.
[24] 林平. 介质阻挡氢等离子体制备CH4 CO2重整Ni/Al2O3催化剂[D]. 大连: 大连理工大学, 2013.
LIN Ping. Preparation of Ni/Al2O3 catalyst for CO2 reforming of methane by dielectric barrier discharge plasma [D]. Dalian: Dalian University of Technology, 2013.
[25] 杨晓娟, 刘宁, 王玉和. 甲烷无氧脱氢芳构化反应最新研究进展[J]. 化学工程师, 2006. 4(4): 32-36.
YANG Xiao juan, LIU Ning, WANG Yu he. Progress in methane dehydro aromatization under the condition of oxygen free [J]. Chemical Engineer, 2006. 4(4): 32-36.
[26] 陈栋梁, 白宇新, 王真, 等. 甲烷在氢气助解下的脱氢偶联研究[J]. 天然气化工, 2001, 26: 18-22.
CHEN Dong liang, BAI Yu xin, WANG Zhen, et al. Study on coupling reaction of methane dehydrogenation at the aid decomposition of hydrogen [J]. Nature Gas Chemical Industry, 2001, 26: 18-22.
[27] 代斌, 陈韩飞, 洪成林, 等. 脉冲电晕等离子体作用下CH4/H2反应的机理[J]. 化学研究与应用, 2007, 19(7): 771-774.
DAI Bin, CHEN Han fei, HONG Cheng lin, et al. Mechanism of CH4/H2 conversion under pulse corona plasma [J]. Chemical Research and Application, 2007, 19(7): 771-774.
[28] 贺新福. 甲烷低温等离子体活化与煤热解耦合过程研究[D]. 大连: 大连理工大学, 2012.
HE Xin fu. Integrated process of coal pyrolysis with methane activation by cold plasma [D]. Dalian: Dalian University of Technology, 2012.
[29] ABOUL A K, ELMARSY M S, AWADALLAH A E. Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo Fe, Mo Co or Mo Ni/HZSM 5 catalysts prepared by mechanical mixing [J]. Fuel Processing Technology, 2012 (102): 24-29.
[30] 吴波. 神东和平朔煤在不同反应器中的热解特性[D]. 大连: 大连理工大学, 2009.
WU Bo. Pyrolysis performances of Shendong and Pingshuo coals in different reactors [D]. Dalian: Dalian University of Technology, 2009.

[1] 陈玲红,颜明明,吴建,吴学成,董翠维,岑可法. 基于数码相机的部分预混火焰碳烟体积分数场测量[J]. 浙江大学学报(工学版), 2016, 50(11): 2069-2076.
[2] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[3] 唐巍,夏芝香,夏良燕,方梦祥,王勤辉,骆仲泱. 低温煤焦油加氢精制-裂化工艺流程模拟[J]. 浙江大学学报(工学版), 2015, 49(5): 924-929.
[4] 夏良燕,夏芝香,方梦祥,唐巍,王勤辉,骆仲泱. 煤焦油中芳烃(萘)的加氢饱和试验[J]. 浙江大学学报(工学版), 2015, 49(3): 578-584.