Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
基于热重红外质谱联用技术定量分析燃煤气体产物
陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Quantitative analysis of gaseous products evolved by coal combustion using TGFTIRMS technique
CHEN Ling hong, CHEN Xiang, WU Jian, WU Yan yan
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1019 KB)   HTML
摘要:

为了准确定量表征燃煤过程中的多组分混合气体产物,以在氮气气氛中神华混煤热解过程为例,采用热重红外质谱联用技术,结合脉冲热分析法,研究煤热解多组分气体产物的逸出特性,重点讨论载气流量、炉温、红外光谱检测分辨率及扫描次数等参数对气体定量测量的影响,分别建立红外光谱以及质谱定量标定工作曲线,确定CO2和CH4的平均析出量.结果表明,神华混煤热解主要生成CO2,CH4,H2,CO,H2O以及含CH、CO、C=O等官能团的气体;红外光谱标定信号主要受载气流量和分辨率的影响;红外光谱和质谱定量结果存在差异;神华混煤热解过程中每毫克煤样析出CO2和CH4的平均量分别为65.9和24.1 μg.

Abstract:

The pyrolysis of Shenhua blended coal in N2 was investigated using TGFTIRMS coupling system and PulseTA method in order to quantitatively analyze multicomponent gases evolved from coal combustion. The effects of experimental parameters such as carrier gas flow, furnace temperature, detecting resolution and scans of FTIR on gaseous quantitative results were discussed. The quantitative calibration curves for CO2 and CH4 in FTIR and MS were established to calculate their corresponding average yields, respectively. Results show that gases such as CO2, CH4, H2, CO, H2O and molecules with functional groups like CH, CO and C=O, etc. are evolved during the coal pyrolysis. The FTIR calibrating signals are mainly affected by carrier gas flow and FTIR resolution. The inconformity occurs between the signals of FTIR and MS. The average yields of CO2 and CH4 from per milligram of coal during Shenhua blended coal pyrolysis are 65.9 and 24.1 μg, respectively.

出版日期: 2017-01-14
:  TQ 530.2  
基金资助:

国家自然科学基金资助项目(51206144); 环保部公益资助项目(2014090084); 国家“973”计划资助资助项目(2015CB251501); 高等学校学科创新引智计划资助项目(B08026).

通讯作者: 邱坤赞, 男, 副教授. ORCID: 0000000229540735.     E-mail: qiukz@zju.edu.cn
作者简介: 陈玲红(1972-), 女, 副教授. 从事化石燃烧机理、能源清洁利用、细微颗粒物检测与控制等研究. ORCID: 0000000281714632. E-mail: chenlh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.021.

CHEN Ling hong, CHEN Xiang, WU Jian, WU Yan yan. Quantitative analysis of gaseous products evolved by coal combustion using TGFTIRMS technique. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.021        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/961

[1]岑可法, 姚强, 骆仲泱, 等. 高等燃烧学[M]. 杭州: 浙江大学出版社, 2002: 3.
[2]王树荣, 刘倩, 骆仲泱, 等. 基于热重红外联用分析的纤维素热裂解机理研究[J]. 浙江大学学报:工学版, 2006, 40(7):1154-1158.
WANG Shurong, LIU Qian, LUO Zhongyang, et al. Mechanism study of cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(7):1154-1158.
[3]YAN Junwei, JIANG Xiumin, HAN Xiangxin, et al. ATG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen [J]. Fuel, 2013, 104(2): 307-317.
[4]SCACCIA S. TG–FTIR and kinetics of devolatilization of Sulcis coal [J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(104): 95-102.
[5]SHEN Dekui, YE Jiangming, XIAO Rui, et al. TGMS analysis for thermal decomposition of cellulose under different atmospheres [J]. Carbohydrate Polymers, 2013, 98(1): 514-521.
[6]WANG Shaoqing, TANG Yuegang, SCHOBERT H H, et al. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China [J]. Journal of Analytical and Applied Pyrolysis, 2013, 100(6): 75-80.
[7]AHAMAD T, ALSHEHRI S M. TG–FTIR–MS (Evolved Gas Analysis) of bidi tobacco powder during combustion and pyrolysis [J]. Journal of hazardous materials, 2012, 199(2): 200-208.
[8]PRPRIE, NISTOR M T, POPESCU M C, et al. TG/FTIR/MS study on thermal decomposition of polypropylene/biomass composites[J]. Polymer Degradation and Stability, 2014, 109(28): 13-20.
[9]孙诗兵, 高庆, 田英良, 等. 热重红外质谱联用研究酚醛泡沫塑料热解过程[J]. 建筑材料学报, 2014, 17(2): 246-249.
SUN Shibing, GAO Qing, TIAN Yingliang, et al. Research on pyrolysis process of phenolic foam by TGFTIRMS [J]. Journal of Building Materials, 2014, 17(2): 246-249.
[10]陆昌伟, 奚同庚. 热分析质谱法[M]. 上海: 上海科学技术文献出版社, 2002: 166-175.
[11]GRANADA E, EGUA P, VILAN J A, et al. FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process [J]. Renewable Energy, 2012, 41(2): 416-421.
[12]MENG Aihong, ZHOU Hui, QIN Lin, et al. Quantitative and kinetic TGFTIR investigation on three kinds of biomass pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(11): 28-37.
[13]孙绍增, 曾光, 魏来, 等. 典型无烟煤热解成分的定量分析研究[J]. 燃料与化工, 2011, 42(4): 14.
SUN Shaozeng, ZENG Guang, WEI Lai, et al. Quantitative analysis and study on pyrolysis components of typical anthracite [J]. Fuel & Chemical Process, 2011, 42(4): 14.
[14]COURT R W, SEPHTON M A. Quantitative flash pyrolysis Fourier transform infrared spectroscopy of organic materials [J]. Analytica Chimica Acta, 2009, 639(1): 62-66.
[15]于惠梅, 张青红, 齐玲均, 等. 热分析质谱联用中逸出气体的脉冲热分析定量方法[J]. 中国科学: 化学, 2010, 40(9): 026.
YU Huimei, ZHANG Qinghong, Qi Lingjun, et al. PulseTA quantitative method on evolved gas analysis in TAMS [J]. Science China: Chemistry, 2010, 40(9): 026.
[16]MACIEJEWSKI M, BAIKER A. Quantitative calibration of mass spectrometric signals measured in coupled TAMS system[J]. Thermochimica acta, 1997, 295(1): 95-105.
[17]EIGENMANN F, MACIEJEWSKI M, BAIKER A. Quantitative calibration of spectroscopic signals in combined TGFTIR system[J]. Thermochimica acta, 2006, 440(1): 81-92.
[18]EIGENMANN F, MACIEJEWSKI M, BAIKER A. Influence of measuring conditions on the quantification of spectroscopic signals in TAFTIRMS systems[J]. Journal of Thermal Analysis and Calorimetry, 2006, 83(2): 3330.
[19]陈玲红, 吴学成, 岑可法. 热重红外联用气体产物光谱信号定量研究[J]. 浙江大学学报: 工学版, 2009, 43(7): 1332-1336.
CHEN Linghong, Wu Xuecheng, CEN Kefa. Quantitative research of evolved gas rate by TGAFTIR. Journal of Zhejiang University: Engineering Science, 2009, 43(7): 1332-1336.
[20]陈玲红, 吴学成, 周昊, 等. 热重红外联用多组分混合气体产物定量分析[J]. 浙江大学学报: 工学版, 2010 (8): 1579-1583.
CHEN Linghong, Wu Xuecheng, ZHOU Hao, et al. Quantitative analysis of multicomponent gases mixture evolved in combined TGFTIR[J]. Journal of Zhejiang University: Engineering Science, 2010 (8): 1579-1583.
[21]ARENILLAS A, RUBIERA F, PEVIDA C, et al. Thermogravimetric–mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation [J]. Journal of Analytical and Applied Pyrolysis, 2002, 65(1): 57-70.
[22]连晨舟, 吕子安, 徐旭常. 典型毒害气体的 FTIR 吸收光谱分析[J]. 中国环境监测, 2004, 20(2): 17-20.
LIAN Chenzhou, LV Zian, XU Xuchang. FTIR spectroscopic analysis of the exit gas in industry[J]. Environmental Monitoring in China, 2011, 42(4): 14.

[1] 陈玲红,颜明明,吴建,吴学成,董翠维,岑可法. 基于数码相机的部分预混火焰碳烟体积分数场测量[J]. 浙江大学学报(工学版), 2016, 50(11): 2069-2076.
[2] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[3] 唐巍,夏芝香,夏良燕,方梦祥,王勤辉,骆仲泱. 低温煤焦油加氢精制-裂化工艺流程模拟[J]. 浙江大学学报(工学版), 2015, 49(5): 924-929.
[4] 夏良燕,夏芝香,方梦祥,唐巍,王勤辉,骆仲泱. 煤焦油中芳烃(萘)的加氢饱和试验[J]. 浙江大学学报(工学版), 2015, 49(3): 578-584.