Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
低温煤焦油加氢精制-裂化工艺流程模拟
唐巍,夏芝香,夏良燕,方梦祥,王勤辉,骆仲泱
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Simulation of low temperature coal tar hydrotreating-hyrocracking process
TANG Wei, XIA Zhi-xiang, XIA Liang-yan, FANG Meng-xiang, WANG Qin-hui, LUO Zhong-yang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(798 KB)   HTML
摘要:

利用化工模拟软件Aspen Plus,建立低温煤焦油加氢精制-加氢裂化工艺流程.以低温煤焦油中主要化合物作为模拟焦油物流,计算低温煤焦油加氢精制-加氢裂化工艺的产品收率、性质和系统能耗,考察了加氢反应温度、压力对于产品品质和能耗的影响.结果表明,该模型可以较好地模拟煤焦油加氢精制-加氢裂化工艺,模拟结果与文献实验值较为接近.系统主要能耗为原料加热炉和氢气压缩机能耗,分别占总能耗的58.7%和24.3%.提高加氢反应温度和压力都可以提高汽油馏分的收率,降低柴油馏分收率和汽、柴油中的S、N含量,但温度的影响要更为明显.加氢裂化反应温度由345 ℃提高到420 ℃,系统总能耗将提高15%以上.提高反应压力会显著增大氢气压缩机能耗,但对系统总能耗影响不大.

Abstract:

A flowsheet of hydrotreating-hydrocracking system for the production of gasoline and diesel oil from low temperature coal tar was designed and simulated by Aspen Plus. Several typical compounds in low temperature coal tar were chosen as the simu-tar flow. The  yield and property of product  and energy consumption of the system were analysed. The effects of reaction temperature and pressure on product properties and energy consumption were evaluated as well. The results show the good concordance between the simulation and the experimental results in references, indicating that the process is well simulated. Heating furnace and hydrogen compressor cost most of system energy consumption with 58.7% and 24.3%, respectively, of the total. The increase of reaction temperature or pressure can enhance gasoline fraction yield, and decrease diesel oil pfaction yield and the content of S and N in all products. However, the effect of temperature is more significant than that of pressure. The system total energy consumption increases by more than 15% when hydrocracking temperature increases from 345 °C to 420 °C. Increasing reaction pressure leads to apparent increase of energy consumption of hydrogen compressor, while a little increase in total energy consumption.

出版日期: 2015-12-26
:  TQ 530.2  
基金资助:

国家“863”高技术研究发展计划资助项目(2013AA051203);国际合作项目(2011DFR60190,2010DFA72730)

通讯作者: 方梦祥,男,博导     E-mail: mxfang@zju.edu.cn
作者简介: 唐巍(1986-),男,博士生.从事煤焦催化加氢的研究.E-mall:tangwei1011@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐巍,夏芝香,夏良燕,方梦祥,王勤辉,骆仲泱. 低温煤焦油加氢精制-裂化工艺流程模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.05.016.

TANG Wei, XIA Zhi-xiang, XIA Liang-yan, FANG Meng-xiang, WANG Qin-hui, LUO Zhong-yang. Simulation of low temperature coal tar hydrotreating-hyrocracking process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.05.016.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.05.016        http://www.zjujournals.com/eng/CN/Y2015/V49/I5/924

[1] STANMORE B R. The formation of dioxins in combustion systems [J]. Combustion and Flame, 2004, 136, 398-427.
[2] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review [J]. Chemical Engineering Journal, 2002, 86:343-368.
[3] 张海英,赵由才,祁景玉. 生活垃圾焚烧飞灰的物理化学特性[J]. 环境科学与技术,2008,31(11):96-99.
ZHANG Hai-ying, ZHAO You-cai, QI Jing-yu. Physicochemical property of MSWI fly ash [J]. Environmental Science and Technology, 2008, 31(11):96-99.
[4] 王军,蒋建国,隋继超,等. 垃圾焚烧飞灰基本性质的研究[J]. 环境科学,2006,27(11):2283-2287.
WANG Jun, JIANG Jian-guo, SUI Ji-chao, et al. Fundamental properties of fly ash from municipal solid waste incineration [J]. Environmental Science, 2006,27(11):2283-2287.
[5] 李建新,严建华,金余其,等. 生活垃圾焚烧飞灰重金属特性分析[J]. 浙江大学学报:工学版,2004,38(4):490-494.
LI Jian-xin, YAN Jian-hua, JIN Yu-qi, et al. Characteristic analysis of heavy metals in MSWI fly ash [J]. Journal of Zhejiang University:Engineering Science, 2004,38(4):490-494.
[6] MOULDER J F, STICHLE W F, SOBOL P E, et al. Handbook of X-ray photoelectron spectroscopy [M]. Eden Praine: Perkin-Elmer,1992:38-65,168-188.
[7] 王学涛,焦有宙,金保升. 华东地区垃圾焚烧飞灰基本特性研究[J]. 热力发电,2007(5):38-42.
WANG Xue-tao, JIAO You-zhou, JIN Bao-sheng. Analysis of basic characteristics concerning fly ash from MSW incineration in east China [J]. Thermal Power Generation, 2007(5):38-42.
[8] 李润东,聂永丰,李爱民,等. 垃圾焚烧飞灰理化特性研究[J]. 燃料化学学报,2004,32(2):175-179.
LI Run-dong, NIE Yong-feng, LI Ai-min, et al. Study on physical chemical characteristics of fly ash from municipal solid waste incinerator [J]. Journal of Fuel Chemistry and Technology, 2004, 32(2):175-179.
[9] 李浩,王恒,耿海洋,等. 垃圾焚烧飞灰物理化学性质的实验研究[J]. 环境工程学报,2007,1(12):137-140.
LI Hao, WANG Heng, GENG Hai-yang, et al. A study on physical and chemical characteristics of fly ash from municipal solid waste incinerator [J]. Chinese Journal of Environmental Engineering, 2007, 1(12):137-140.
[10] TSUBOUCHI N, HAYASHI H, KAWASHIMA A, et al. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants [J]. Fuel, 2011, 90(1):376-383.
[11] TSUBOUCHI N, HASHIMOTO H, OHTAKA N, et al. Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: Some factors influencing the formation of hexachlorobenzene [J]. Journal of Harazardous Materials, 2010, 183(1-3):116-124.
[12] FUJIMORI E, SHIOZAWA R, IWATA S, et al. Multielement and morphological characterization of industrial waste incineration fly ash as studied by ICP-AES/ICP-MS and SEM-EDS [J]. Bulletin of the Chemical Society of Japan, 2002, 75(6):1205-1213.
[13] BELEVI H, MOENCH H. Factors determining the element behavior in municipal solid waste incinerators:1.Field Studies [J]. Environmental Science and Technongy, 2000, 34:2501-2506.
[14] CHEN J C, WEY M Y, LIU Z S. Adsorption mechanism of heavy metals on sorbents during incineration [J]. Journal of Environmental Engineering, 2001, 127(1):63-69.
[15] CAHILL C A, NEWLAND L W. Comparative efficiencies of trace metal extraction from municipal incinerator ashes [J]. International Journal of Environmental Analytical Chemistry, 1982, 11:227-239.
[16] DAVISON R L, NATUSCH D F S, WALLACE J R, et al. Trace elements in fly ash-dependence of concentration on particle size [J]. Environmental Science and Technongy, 1974, 8(13): 1107-1113.
[17] FERNANDEZ M A, MARTINE L, SEGARRA M, et al. Behavior of Heavy Metal In the Combustion Gases of Urban Waste Incinerators [J]. Environmental Science and Technology, 1992, 26(5):1040-1047.
[18] KLAIN D H, ANDREN A W, CENTER J A, et al. Pathways of 37 trace elements through coal-fired power plant [J]. Environmental Science and Technology, 1975, 9(9):973-979.
[19] TAKAOKA M, TAKEDA N, MIURA S. The behaviour of heavy metals and phosphorus in an ash melting process [J]. Waste Science and Technology, 1997, 36(11): 275282.
[20] UCHIDA S, KAMO H, KUBOTA H. The source of HCl emission from municipal refuse incinerators [J]. Industrial and Engineering Chemistry Research, 1988, 27(11):2188-2190.
[21] WEI M Y, SU J L, YAN M H, et al. The concentration distribution of heavy metals under different incineration operation conditions [J]. The Science of the Total Environment, 1998, 212:183-193.
[22] J A 迪安,魏俊华. 兰氏化学手册[M]. 北京:科学出版社,2000:410-4129.

[1] 陈玲红,颜明明,吴建,吴学成,董翠维,岑可法. 基于数码相机的部分预混火焰碳烟体积分数场测量[J]. 浙江大学学报(工学版), 2016, 50(11): 2069-2076.
[2] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[3] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[4] 夏良燕,夏芝香,方梦祥,唐巍,王勤辉,骆仲泱. 煤焦油中芳烃(萘)的加氢饱和试验[J]. 浙江大学学报(工学版), 2015, 49(3): 578-584.