Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1826-1834    DOI: 10.3785/j.issn.1008-973X.2019.09.022
环境工程     
褐煤在N2及CO2气氛下的热解与富氧燃烧特性
山石泉1(),周志军1,*(),匡建平2,张煜2,岑可法1
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
2. 宁夏神耀科技有限责任公司,宁夏 银川 751411
Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres
Shi-quan SHAN1(),Zhi-jun ZHOU1,*(),Jian-ping KUANG2,Yu ZHANG2,Ke-fa CEN1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Ningxia Shenyao Technology Co. Ltd, Yinchuan 751411, China
 全文: PDF(1391 KB)   HTML
摘要:

为了掌握不同气氛下褐煤热解与富氧燃烧的特性以及其之间的联系,在管式炉反应器上利用锡盟褐煤在N2和CO2气氛以及600~1 000 °C条件下进行热解. 进一步对其在O2/N2以及O2/CO2气氛下进行富氧燃烧实验,考察不同反应温度(600~1 000 °C)以及不同氧气体积分数(21%~60%)条件下的富氧燃烧特性,结合热解实验结果探究CO2气化反应对富氧燃烧的影响. 结果表明,CO2气氛中锡盟褐煤在700 °C时开始CO2气化反应,随温度增加气化反应增强,CO2主要通过高温区的气化反应来影响煤热解及燃烧,700 °C以上气化反应能促进富氧燃烧进程. 对于O2/CO2气氛的富氧燃烧,当氧气体积分数为30%时,在800 °C以下温度对CO氧化反应影响更大,而在800 °C以上温度对CO2气化反应影响更大. 当氧气体积分数相同时,O2/N2以及O2/CO2气氛下褐煤富氧燃烧反应时间差异不大.

关键词: 富氧燃烧褐煤热解管式炉燃烧气氛CO2气化    
Abstract:

A pyrolysis experiment was carried out in a tubular furnace using Ximeng lignite under N2 and CO2 atmospheres at the temperature between 600 °C and 1000 °C, in order to investigate the characteristics of lignite pyrolysis and oxy-fuel combustion under different atmospheres and to obtain their relationship. Further oxy-lignite combustion experiments under O2/N2 and O2/CO2 atmospheres were performed to investigate the oxy-lignite combustion characteristics under different reaction temperatures (from 600 °C to 1 000 °C) and different oxygen concentrations (from 21% to 60%). The effects of CO2 gasification on oxy-fuel combustion were explored based on the results of lignite pyrolysis. Results show that the Ximeng lignite gasification starts at 700 °C under CO2 atmosphere and the CO2 gasification is enhanced with the increase of temperature. CO2 mainly affects coal pyrolysis and combustion through gasification reaction at high temperature; the presence of gasification reaction after 700 °C can promote the oxy-fuel combustion process. For oxy-fuel combustion under O2/CO2 atmosphere, when the oxygen concentration is 30%, the temperature below 800 °C has greater effect on CO oxidation, while the temperature above 800 °C has greater effect on CO2 gasification. Moreover, there is little difference in the combustion time between two atmospheres of O2/CO2 and O2/N2 with the same oxygen concentration.

Key words: oxy-fuel combustion    lignite    pyrolysis    tubular furnace    combustion atmosphere    CO2 gasification
收稿日期: 2018-07-22 出版日期: 2019-09-12
CLC:  TK 16  
通讯作者: 周志军     E-mail: shiquan1204@zju.edu.cn;zhouzj@zju.edu.cn
作者简介: 山石泉(1993—),男,博士生,从事富氧燃烧,热辐射热力学以及能量高效转化系统研究.orcid.org/0000-0001-6635-7625. E-mail: shiquan1204@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
山石泉
周志军
匡建平
张煜
岑可法

引用本文:

山石泉,周志军,匡建平,张煜,岑可法. 褐煤在N2及CO2气氛下的热解与富氧燃烧特性[J]. 浙江大学学报(工学版), 2019, 53(9): 1826-1834.

Shi-quan SHAN,Zhi-jun ZHOU,Jian-ping KUANG,Yu ZHANG,Ke-fa CEN. Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1826-1834.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1826

图 1  管式炉热解及富氧燃烧实验系统示意图
煤种 工业分析 wB / % 元素分析 wB / %
M A V FC C H N S O
  注:1)表中数据为空气干燥基.
锡盟褐煤 20.20 14.01 31.20 34.59 45.69 2.84 0.63 0.75 15.88
表 1  锡盟褐煤工业分析与元素分析1)
图 2  褐煤在N2和CO2气氛下热解的TG和DTG曲线
气氛 θS/°C θmax/°C Δθ0.5/°C (dw/dt)max D/(10?7 %·min?1·°C?3)
N2 259.04 442.54 192 ?2.582 40 1.173 28
CO2 285.16 438.16 219 ?2.669 26 0.975 50
表 2  褐煤在N2和CO2气氛下的热解特性参数
反应 θ/°C E/(kJ·mol?1) ρ
N2热解 259.04~442.54 63.42 0.990 7
CO2热解 285.16~438.16 74.83 0.991 0
CO2气化 720.16~900.00 249.11 0.980 0
表 3  褐煤热解气化的动力学参数
图 3  褐煤热解过程各种气体的生成量
图 4  不同氧气体积分数燃烧CO生成比例曲线
图 5  O2/CO2及O2/N2气氛下不同氧气体积分数的燃烧反应时间与最快反应速率
图 6  不同氧气体积分数下褐煤富氧燃烧n21值变化趋势
图 7  不同温度条件下燃烧CO生成比例曲线
图 8  典型富氧及空气工况下不同温度条件下燃烧反应时间及最快反应速率
图 9  不同温度下褐煤富氧燃烧n21值变化趋势
1 NEMITALLAH M A, HABIB M A, BADR H M, et al Oxy-fuel combustion technology: current status, applications, and trends[J]. International Journal of Energy Research, 2017, 41 (12): 1670- 1708
doi: 10.1002/er.v41.12
2 郑楚光, 赵永椿, 郭欣 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34 (23): 3856- 3864
ZHENG Chu-guang, ZHAO Yong-chun, GUO Xin Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34 (23): 3856- 3864
3 周志军, 涂艳伟, 游卓, 等 O2/CO2气氛下石油焦富氧燃烧特性研究 [J]. 热力发电, 2013, 42 (9): 45- 48
ZHOU Zhi-jun, TU Yan-wei, You Zhuo, et al Oxy-fuel combustion characteristics of petroleum coke in O2/CO2 atmosphere [J]. Thermal Power Generation, 2013, 42 (9): 45- 48
doi: 10.3969/j.issn.1002-3364.2013.09.045
4 吴迪, 邹春, 蔡磊, 等 CO2的物理化学属性对于煤粉富氧燃烧着火的影响 [J]. 燃烧科学与技术, 2016, 22 (6): 558- 562
WU Di, ZOU Chun, CAI Lei, et al Effect of physical and chemical properties of CO2 on ignition of coal particle in O2/CO2 atmosphere [J]. Journal of Combustion Science and Technology, 2016, 22 (6): 558- 562
5 段伦博, 赵长遂, 周骛, 等 CO2气氛对烟煤热解过程的影响 [J]. 中国电机工程学报, 2010, (2): 62- 66
DUAN Lun-bo, ZHAO Chang-sui, ZHOU Wu, et al Effect of CO2 atmosphere on the pyrolysis process of bituminous coal [J]. Proceedings of the CSEE, 2010, (2): 62- 66
6 高松平, 赵建涛, 王志青, 等 CO2对褐煤热解行为的影响 [J]. 燃料化学学报, 2013, 41 (3): 257- 264
GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, et al Effect of CO2 on pyrolysis behaviors of lignite [J]. Journal of Fuel Chemistry and Technology, 2013, 41 (3): 257- 264
doi: 10.3969/j.issn.0253-2409.2013.03.001
7 周志军, 姜旭东, 周俊虎, 等 煤粉富氧燃烧着火模式判断和动力学参数分析[J]. 浙江大学学报: 工学版, 2012, 46 (3): 482- 488
ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, et al Ignition model and kinetic parameters analysis of oxygen-enriched combustion of pulverized coal[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 482- 488
8 刘倩, 钟文琪, 苏伟, 等 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报, 2018, 69 (1): 523- 530
LIU Qian, ZHONG Wen-qi, SU Wei, et al Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018, 69 (1): 523- 530
9 胡昕, 周志军, 王智化, 等 利用热分析法研究CO2对褐煤富氧燃烧特性的影响 [J]. 热力发电, 2013, 42 (3): 15- 19
HU xin, ZHOU Zhi-jun, WANG Zhi-hua, et al Thermogravimetry based analysis on the influence of CO2 on oxy-fuel combustion characteristics of lignite [J]. Thermal Power Generation, 2013, 42 (3): 15- 19
doi: 10.3969/j.issn.1002-3364.2013.03.015
10 何先辉, 顾明言, 李红, 等 O2/CO2气氛下煤粉燃烧NO排放特性 [J]. 燃烧科学与技术, 2017, 23 (6): 554- 559
HE Xian-hui, GU Ming-yan, LI Hong, et al NO emission characteristics of pulverized coal combustion in O2/CO2 atmosphere [J]. Journal of Combustion Science and Technology, 2017, 23 (6): 554- 559
11 王勇, 黄晓宏, 卢兴, 等 富氧燃烧条件下燃煤NOx排放的实验研究 [J]. 环境工程学报, 2016, 10 (7): 3751- 3755
WANG Yong, HUANG Xiao-hong, LU Xing, et al Experimental study of NOx emissions from coal combustion under oxy-fuel conditions [J]. Chinese Journal of Environmental Engineering, 2016, 10 (7): 3751- 3755
doi: 10.12030/j.cjee.201501239
12 WANG C, ZHANG X, LIU Y, et al Pyrolysis and combustion characteristics of coals in oxy-fuel combustion[J]. Applied Energy, 2012, 97: 264- 273
doi: 10.1016/j.apenergy.2012.02.011
13 KOSOWSKA-GOLACHOWSKA M Thermal analysis and kinetics of coal during oxy-fuel combustion[J]. Journal of Thermal Science, 2017, 26 (4): 355- 361
doi: 10.1007/s11630-017-0949-0
14 RATHNAM R K, WALL T F, MOGHTADERI B. Reactivity of pulverized coals and their chars in oxyfuel (O2/CO2) and air (O2/N2) conditions [C] // 3rd Oxyfuel Combustion Conference. Ponferrada: International Energy Agency, 2013.
15 RATHNAM R K. Pulverized coal combustibility in simulated oxy-fuel (O2/CO2) and air (O2/N2) conditions [D]. Newcastle: The University of Newcastle, 2012.
16 YUZBASI N S, SELCUK N Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR[J]. Fuel Processing Technology, 2011, 92 (5): 1101- 1108
doi: 10.1016/j.fuproc.2011.01.005
17 魏砾宏, 李润东, 李爱民, 等 煤粉热解特性实验研究[J]. 中国电机工程学报, 2008, 28 (26): 53- 58
WEI Li-hong, LI Run-dong, LI Ai-min, et al Thermo gravimetric analysis on the pyrolysis characteristics of pulverized coal[J]. Proceedings of the CSEE, 2008, 28 (26): 53- 58
doi: 10.3321/j.issn:0258-8013.2008.26.010
18 JAMIL K, HAYASHI J, LI C Z Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor [J]. Fuel, 2004, 83 (7/8): 833- 843
doi: 10.1016/j.fuel.2003.09.017
19 郝成浩, 朱生华, 白永辉, 等 CO2气氛对胜利褐煤热解过程的影响 [J]. 燃料化学学报, 2017, 45 (3): 272- 278
HAO Cheng-hao, ZHU Sheng-hua, BAI Yong-hui, et al Effect of CO2 on pyrolysis behavior of Shengli lignite [J]. Journal of Fuel Chemistry and Technology, 2017, 45 (3): 272- 278
doi: 10.3969/j.issn.0253-2409.2017.03.003
20 ARENILLAS A, RUBIERA F, PIS J J Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50 (1): 31- 46
doi: 10.1016/S0165-2370(99)00024-8
21 MOLINA A, SHADDIX C R Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion[J]. Proceedings of the combustion institute, 2007, 31 (2): 1905- 1912
doi: 10.1016/j.proci.2006.08.102
22 陶子宸, 王长安, 王鹏乾, 等 低挥发分半焦富氧燃烧扩散效应研究[J]. 西安交通大学学报, 2018, 52 (9): 160- 166
TAO Zi-chen, WANG Chang-an, WANG Peng-qian, et al Study on the diffusional effects of oxy-fuel combustion of low volatile semicoke[J]. Journal of Xi’an Jiaotong University, 2018, 52 (9): 160- 166
23 BEJARANO P A, LEVENDIS Y A Single-coal-particle combustion in O2/N2 and O2/CO2 environments [J]. Combustion and flame, 2008, 153 (1/2): 270- 287
doi: 10.1016/j.combustflame.2007.10.022
24 RATHNAM R K, ELLIOTT L K, WALL T F, et al Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions [J]. Fuel Processing Technology, 2009, 90 (6): 797- 802
doi: 10.1016/j.fuproc.2009.02.009
25 ENGIN B, ATAKUL H Air and oxy-fuel combustion kinetics of low rank lignites[J]. Journal of the Energy Institute, 2016, 91: 311- 322
26 雷鸣, 王春波, 黄星智. CO2气化反应对O2/CO2气氛中煤焦燃烧特性影响[J]. 煤炭学报, 2015, 40(增2): 511-516.
LEI Ming, WANG Chun-bo, HUANG Xing-zhi. Effect of CO2 gasification on the combustion characteristics of char under O2/CO2 atmosphere[J]. Journal of China Coal Society, 2015, 40(Suppl. 2): 511-516.
[1] 杨华美,李靖,堵锡华. 木质素单体模化物的热解与产物分析[J]. 浙江大学学报(工学版), 2021, 55(5): 976-983.
[2] 朱凯,王云鹤,秦雪薇,黄亚东,王强,吴珂. 升温速率对沥青燃烧和气态产物释放特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1805-1811.
[3] 李晓洁,岑建孟,夏芝香,方梦祥,王涛,王勤辉,骆仲泱. 松木屑与煤加压热解特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1298-1305.
[4] 邢江宽,王海鸥,罗坤,白云,樊建人. 预测生物质热解动力学参数的随机森林模型[J]. 浙江大学学报(工学版), 2019, 53(3): 605-612.
[5] 汪岸, 骆仲泱, 方梦祥, 岑建孟, 姚鹏. 煤热解沥青炭化程度对KOH活化制备活性炭孔隙结构的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1551-1557.
[6] 柳佳佳, 岑建孟, 方梦祥, 陈泉霖. 不同气体成分下高温直流放电特性[J]. 浙江大学学报(工学版), 2018, 52(5): 971-979.
[7] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[8] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[9] 张帅毅,黄亚继,王昕晔,严玉朋,刘长奇,陈波. 模拟垃圾焚烧过程中氯对铅动态挥发特性的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 485-490.
[10] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报(工学版), 2016, 50(2): 327-332.
[11] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[12] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[13] 孙强,张彦威,李谦,王智化,葛立超,周志军,岑可法. 褐煤快速热解半焦理化特性及气化活性[J]. 浙江大学学报(工学版), 2016, 50(11): 2045-2051.
[14] 龚俊辉, 陈怡璇, 李劲, 周洋. PMMA表面与深度吸收热解过程数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1879-1888.
[15] 潘志娟, 黄群星, Moussa-Mallaye Alhadj-Mallah, 王君, 池涌, 严建华. 活性炭对储运油泥微波热解特性的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1166-1172.