材料与化学工程 |
|
|
|
|
木质素单体模化物的热解与产物分析 |
杨华美( ),李靖,堵锡华 |
徐州工程学院 材料与化学工程学院,江苏 徐州 221018 |
|
Pyrolysis and product analysis of lignin monomer model compounds |
Hua-mei YANG( ),Jing LI,Xi-hua DU |
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China |
1 |
SAHA A, BASAK B B Scope of value addition and utilization of residual biomass from medicinal and aromatic plants[J]. Industrial Crops and Products, 2020, 145: 111979
doi: 10.1016/j.indcrop.2019.111979
|
2 |
KUMAR R, STREZOV V, WELDEKIDAN H, et al Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763
doi: 10.1016/j.rser.2020.109763
|
3 |
JEGERS H E, KLEIN M T Primary and secondary lignin pyrolysis reaction pathways[J]. Journal of Industrial and Engineering Chemistry, 1985, 24: 173- 183
|
4 |
杨义. 生物质催化热解和定向调控制取高品位液体燃料的研究[D]. 杭州: 浙江大学, 2019. YANG Yi. Research on catalytic pyrolysis of biomass to advanced liquid fuel[D]. Hangzhou: Zhejiang University, 2019.
|
5 |
HUANG Y, LIU S, ZHANG J, et al Volatile-char interactions during biomass pyrolysis: cleavage of C?C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube[J]. Bioresource Technology, 2020, 307: 123192
|
6 |
JIANG G Z, NOWAKOWSKI D J, BRIDGWATER A V Effect of the temperature on the composition of lignin pyrolysis products[J]. Energy and Fuels, 2010, 24: 4470- 4475
doi: 10.1021/ef100363c
|
7 |
ZHANG M, RESENDE F L P, MOUTSOGLOU A, et al Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65- 71
doi: 10.1016/j.jaap.2012.05.009
|
8 |
衣雪. 生物质热解气相产物析出特性及本征动力学研究[D]. 吉林: 东北电力大学, 2019. YI Xue. Study on precipitation characteristics and intrinsic kinetics of biomass pyrolysis gas products[D]. Jilin: Northeast Electric Power University, 2019.
|
9 |
HUANG Y, GAO Y X, ZHOU H, et al Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77- 82
doi: 10.1016/j.biortech.2018.10.006
|
10 |
ZHOU S, GARCIA-PEREZ M, PECHA B, et al Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood[J]. Energy and Fuel, 2013, 27: 1428- 1438
doi: 10.1021/ef3019832
|
11 |
RANZI E, CUOCI A, FARAVELLI T, et al Chemical kinetics of biomass pyrolysis[J]. Energy and Fuel, 2008, 22: 4292- 4300
doi: 10.1021/ef800551t
|
12 |
FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, et al Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass and Bioenergy, 2010, 34: 290- 301
doi: 10.1016/j.biombioe.2009.10.018
|
13 |
YANG H M, APPARIA S, KUDO S, et al Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Industrial and Engineering Chemistry Research, 2015, 54 (27): 6855- 6864
doi: 10.1021/acs.iecr.5b01289
|
14 |
XU Z F, LIN M C Ab initio kinetics for the unimolecular reaction C6H5OH $ \xrightarrow[{\;\;\;\;\;\;\;\;}]{} $ CO+C5H6[J]. Journal of Physical Chemistry A, 2006, 110: 1672- 1677
doi: 10.1021/jp055241d
|
15 |
ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals[J]. Journal of Physical Chemistry A, 2010, 114: 1098- 1108
doi: 10.1021/jp9091706
|
16 |
KHACHATRYAN L, ASATRYAN R, MCFERRIN C, et al Radicals from the gas-phase pyrolysis of catechol. 2. comparison of the pyrolysis of catechol and hydroquinone[J]. Journal of Physical Chemistry A, 2010, 114: 10110- 10116
doi: 10.1021/jp1054588
|
17 |
ALTARAWNEH M, DLUGOGORSKI Z, KENNEDY E M, et al Theoretical study of unimolecular decomposition of catechol[J]. Journal of Physical Chemistry A, 2010, 114: 1060- 1067
doi: 10.1021/jp909025s
|
18 |
KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al Radicals from the gas-phase pyrolysis of catechol: 1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114: 2306- 2312
doi: 10.1021/jp908243q
|
19 |
CUSTODIS V B F, HEMBERGER P, MA Z Q, et al Mechanism of fast pyrolysis of lignin: studying model compounds[J]. Journal of Physical Chemistry B, 2014, 118: 8524- 8531
doi: 10.1021/jp5036579
|
20 |
ROBICHAUD D J, SCHEER A M, MUKARAKATE C, et al Unimolecular thermal decomposition of dimethoxy benzenes[J]. Journal of Physical Chemistry A, 2014, 140 (23): 234302
doi: 10.1063/1.4879615
|
21 |
LIU C, ZHANG Y Y, HUANG X L Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159- 165
doi: 10.1016/j.fuproc.2014.01.002
|
22 |
SCHEER A M, MUKARAKATE C, ROBICHAUD D J, et al Unimolecular thermal decomposition of phenol and d(5)-phenol: direct observation of cyclopentadiene formation via cyclohexadienone[J]. Journal of Physical Chemistry A, 2012, 136 (4): 44309
doi: 10.1063/1.3675902
|
23 |
YANG H M, FURUTANI Y, KUDO S, et al Experimental investigation of thermal decomposition of dihydroxybenzene isomers: catechol, hydroquinone, and resorcinol[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 321- 329
doi: 10.1016/j.jaap.2016.05.019
|
24 |
LEDESMA E B, HOANG J N, NGUYEN Q, et al Unimolecular decomposition pathway for the vapor-phase cracking of eugenol, a biomass tar compound[J]. Energy and Fuel, 2013, 27: 6839- 6846
doi: 10.1021/ef401760c
|
25 |
ASMADI M, KAWAMOTO H, SAKA S Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 76- 87
doi: 10.1016/j.jaap.2011.04.012
|
26 |
ASMADI M, KAWAMOTO H, SAKA S Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88- 98
doi: 10.1016/j.jaap.2011.04.011
|
27 |
CHU S, SUBRAHMANYAM A V, HUBER G W The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15: 125- 136
doi: 10.1039/C2GC36332A
|
28 |
BESTE A, BUCHANAN A C Role of carbon-carbon phenyl migration in the pyrolysis mechanism of beta-O-4 lignin model compounds: phenethyl phenyl ether and alpha-hydroxy phenethyl phenyl ether[J]. Journal of Physical Chemistry A, 2012, 116: 12242- 12248
doi: 10.1021/jp3104694
|
29 |
NORINAGA K, DEUTSCHMANN O Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons[J]. Industrial and Engineering Chemistry Research, 2007, 46: 3547- 3557
doi: 10.1021/ie061207p
|
30 |
NORINAGA K, DEUTSCHMANN O, SAEGUSA N, et al Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86: 148- 160
doi: 10.1016/j.jaap.2009.05.001
|
31 |
NOWAKOWSKA M, HERBINET O, DUFOUR A, et al Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification[J]. Combustion and Flame, 2014, 161: 1474- 1488
doi: 10.1016/j.combustflame.2013.11.024
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|