Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (2): 161-171    DOI: 10.3785/j.issn.1008-9209.2023.08.071
综述     
基于数据同化系统的作物产量预测研究进展
赵钰1,2(),杨武德1(),段丹丹2,冯美臣1,王超1
1.山西农业大学农学院,山西 晋中 030801
2.北京市农林科学院信息技术研究中心,北京 100097
Research progress on crop yield prediction based on data assimilation system
Yu ZHAO1,2(),Wude YANG1(),Dandan DUAN2,Meichen FENG1,Chao WANG1
1.College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
2.Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
 全文: PDF(4277 KB)   HTML
摘要:

数据同化系统融合了遥感数据和作物生长模型的优势,是实时监测农业生产状况的有力手段。本文在简要介绍作物产量遥感估测方法的基础上,重点对数据同化算法的发展情况、多源遥感数据在数据同化上的应用潜力、数据同化系统的不确定性以及数据同化系统的尺度效应4方面进行论述。并且针对农业应用现状,提出未来应充分挖掘多源遥感数据、多作物生长模型集合和数据算法的优势,最终实现以机理模型为纽带的作物估产模式,并为制定田间管理策略、规划粮食产业布局和制定进出口贸易政策提供有力的数据和技术支撑。

关键词: 产量数据同化系统多作物生长模型集合多源遥感数据    
Abstract:

Data assimilation system integrates the advantages of remote sensing data and crop growth models, providing a powerful means for real-time monitoring of agricultural production conditions. This paper, built upon a brief introduction to remote sensing methods for crop yield estimation, specifically focused on four aspects: the development of data assimilation algorithms, the application potential of multi-source remote sensing data for data assimilation, the uncertainty of data assimilation system, and the scale effects of data assimilation system. In addition, to address the current state of agricultural applications, future efforts should thoroughly explore the advantages of multi-source remote sensing data, multi-crop growth model ensembles, and data algorithms. The ultimate goal is to establish a crop yield estimation model centered around mechanism model, thereby providing robust data and technical support for the formulation of sound field management strategies, the planning of cereal industry layouts, and the establishment of import and export trade policies.

Key words: yield    data assimilation system    multi-crop growth model ensembles    multi-source remote sensing data
收稿日期: 2023-08-07 出版日期: 2024-04-25
CLC:  S127  
基金资助: 国家自然科学基金项目(31871571)
通讯作者: 杨武德     E-mail: zy928286257@163.com;sxauywd@126.com
作者简介: 赵钰(https://orcid.org/0000-0002-2355-2989),E-mail:zy928286257@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵钰
杨武德
段丹丹
冯美臣
王超

引用本文:

赵钰, 杨武德, 段丹丹, 冯美臣, 王超. 基于数据同化系统的作物产量预测研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 161-171.

Yu ZHAO, Wude YANG, Dandan DUAN, Meichen FENG, Chao WANG. Research progress on crop yield prediction based on data assimilation system. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 161-171.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.08.071        https://www.zjujournals.com/agr/CN/Y2024/V50/I2/161

图 1  1975—2023年基于遥感技术对作物产量预测的文献统计A. 文献数量统计;B.词云图。统计时间为1975-01-01到2023-02-28。
图2  作物产量遥感监测模型简单转换模型指根据特定生理过程构建的半经验模型。公式中,Y、AP和RS分别表示产量、农学参数和遥感数据。
图3  2007—2023年有关作物生长模型的文献数量EPIC:侵蚀-土地生产力影响评估模型;MCWLA:捕捉大范围内作物-天气关系的模型。统计时间为2007-01-01到2023-02-28。

数据同化算法

Data assimilation algorithm

作物生长模型

Crop growth model

遥感数据

Remote sensing data

状态变量

State variable

文献

Reference

参数优化算法

Parameter

optimization

algorithm

单纯型搜索算法STICSSPOT、Landsat TM、机载影像叶面积指数[33]
复合型混合演化算法SAFYPlanet生物量[34]
复合型混合演化算法WOFOSTHJ-1A/B叶面积指数、叶片氮积累量[35]
模拟退火算法CERES-MaizeMODIS叶面积指数[36]
粒子群优化算法AquaCrop无人机数据生物量[13]
粒子群优化算法DSSAT地面高光谱数据叶面积指数、冠层氮积累量[37]
遗传算法SWAPLandsat ETM+蒸腾量[38]
Powell共轭方向法DSSATMODIS叶面积指数[39]
四维变分算法CERES-WheatSentinel叶面积指数、土壤含水量[40]

滤波算法

Filtering

algorithm

集合卡尔曼滤波算法SAFYLandsat叶面积指数[41]
集合卡尔曼滤波算法CERES-WheatSentinel叶面积指数、土壤含水量[40]
粒子滤波算法APSIMCubsat叶面积指数[42]
粒子滤波算法PILOTESentinel和Landsat叶面积指数[43]
表1  有关数据同化算法的主要研究
图4  数据同化算法示意图A、B分别为参数优化算法和滤波算法示意图。
1 姜长云,王一杰.新中国成立70年来我国推进粮食安全的成就、经验与思考[J].农业经济问题,2019(10):10-23. DOI:10.13246/j.cnki.iae.2019.10.002
JIANG C Y, WANG Y J. The achievement, experiences of promoting food security in China since the founding of new China 70 years ago and our thinking about it[J]. Issues in Agricultural Economy, 2019(10): 10-23. (in Chinese with English abstract)
doi: 10.13246/j.cnki.iae.2019.10.002
2 KARTHIKEYAN L, CHAWLA I, MISHRA A K. A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses[J]. Journal of Hydrology, 2020, 586: 124905. DOI: 10.1016/j.jhydrol.2020.124905
doi: 10.1016/j.jhydrol.2020.124905
3 BATTUDE M, BITAR A AL, MORIN D, et al. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[J]. Remote Sensing of Environment, 2016, 184: 668-681. DOI: 10.1016/j.rse.2016.07.030
doi: 10.1016/j.rse.2016.07.030
4 EL-HENDAWY S, AL-SUHAIBANI N, ELSAYED S, et al. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions[J]. Plant Physiology and Biochemistry, 2019, 144: 300-311. DOI: 10.1016/j.plaphy.2019.10.006
doi: 10.1016/j.plaphy.2019.10.006
5 FU Z P, JIANG J, GAO Y, et al. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle[J]. Remote Sensing, 2020, 12(3): 508. DOI: 10.3390/rs12030508
doi: 10.3390/rs12030508
6 LI Z H, TAYLOR J, YANG H, et al. A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data[J]. Field Crops Research, 2020, 248: 107711. DOI: 10.1016/j.fcr.2019.107711
doi: 10.1016/j.fcr.2019.107711
7 ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255. DOI: 10.1016/j.isprsjprs.2017.05.003
doi: 10.1016/j.isprsjprs.2017.05.003
8 CHLINGARYAN A, SUKKARIEH S, WHELAN B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69. DOI: 10.1016/j.compag.2018.05.012
doi: 10.1016/j.compag.2018.05.012
9 PERROS N, KALIVAS D, GIOVOS R. Spatial analysis of agronomic data and UAV imagery for rice yield estimation[J]. Agriculture, 2021, 11(9): 809. DOI: 10.3390/agriculture11090809
doi: 10.3390/agriculture11090809
10 徐新刚,吴炳方,蒙继华,等.农作物单产遥感估算模型研究进展[J].农业工程学报,2008,24(2):290-298. DOI:10.3321/j.issn:1002-6819.2008.02.055
XU X G, WU B F, MENG J H, et al. Research advances in crop yield estimation models based on remote sensing[J]. Transactions of the CSAE, 2008, 24(2): 290-298. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6819.2008.02.055
11 付江鹏,贾彪,魏雪,等.基于冠层覆盖度的玉米植株临界氮浓度模型构建与产量预测[J].植物营养与肥料学报,2021,27(10):1703-1713. DOI:10.11674/zwyf.20621
FU J P, JIA B, WEI X, et al. Construction of critical nitrogen concentration model based on canopy coverage and the accuracy in yield prediction of maize[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1703-1713. (in Chinese with English abstract)
doi: 10.11674/zwyf.20621
12 屈莎,李振海,邱春霞,等.基于开花期氮素营养指标的冬小麦籽粒蛋白质含量遥感预测[J].农业工程学报,2017,33(12):186-193. DOI:10.11975/j.issn.1002-6819.2017.12.024
QU S, LI Z H, QIU C X, et al. Remote sensing prediction of winter wheat grain protein content based on nitrogen nutrition index at anthesis stage[J]. Transactions of the CSAE, 2017, 33(12): 186-193. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2017.12.024
13 YUE J B, FENG H K, LI Z H, et al. Mapping winter-wheat biomass and grain yield based on a crop model and UAV remote sensing[J]. International Journal of Remote Sensing, 2021, 42(5): 1577-1601. DOI: 10.1080/01431161.2020.1823033
doi: 10.1080/01431161.2020.1823033
14 JIANG H, HU H, ZHONG R H, et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level[J]. Global Change Biology, 2020, 26(3): 1754-1766. DOI: 10.1111/gcb.14885
doi: 10.1111/gcb.14885
15 CAO J, ZHANG Z, TAO F L, et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches[J]. Agricultural and Forest Meteorology, 2021, 297: 108275. DOI: 10.1016/j.agrformet.2020.108275
doi: 10.1016/j.agrformet.2020.108275
16 LIU J G, PATTEY E, MILLER J R, et al. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model[J]. Remote Sensing of Environment, 2010, 114(6): 1167-1177. DOI: 10.1016/j.rse.2010.01.004
doi: 10.1016/j.rse.2010.01.004
17 陈仲新,任建强,唐华俊,等.农业遥感研究应用进展与展望[J].遥感学报,2016,20(5):748-767. DOI:10.11834/jrs.20166214
CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese with English abstract)
doi: 10.11834/jrs.20166214
18 DONG J, LU H B, WANG Y W, et al. Estimating winter wheat yield based on a light use efficiency model and wheat variety data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 18-32. DOI: 10.1016/j.isprsjprs.2019.12.005
doi: 10.1016/j.isprsjprs.2019.12.005
19 JIN X L, LI Z H, YANG G J, et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 24-37. DOI: 10.1016/j.isprsjprs.2017.02.001
doi: 10.1016/j.isprsjprs.2017.02.001
20 程志强,蒙继华.作物单产估算模型研究进展与展望[J].中国生态农业学报,2015,23(4):402-415. DOI:10.13930/j.cnki.cjea.141218
CHENG Z Q, MENG J H. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402-415. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.141218
21 EZUI K S, LEFFELAAR P A, FRANKE A C, et al. Simulating drought impact and mitigation in cassava using the LINTUL model[J]. Field Crops Research, 2018, 219: 256-272. DOI: 10.1016/j.fcr.2018.01.033
doi: 10.1016/j.fcr.2018.01.033
22 GITELSON A A, PENG Y, ARKEBAUER T J, et al. Pro-ductivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production[J]. Journal of Plant Physiology, 2015, 177: 100-109. DOI: 10.1016/j.jplph.2014.12.015
doi: 10.1016/j.jplph.2014.12.015
23 WANG S Q, HUANG K, YAN H, et al. Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China[J]. Ecological Complexity, 2015, 23: 1-13. DOI: 10.1016/j.ecocom.2015.04.004
doi: 10.1016/j.ecocom.2015.04.004
24 STEDUTO P, HSIAO T C, RAES D, et al. AquaCrop—the FAO crop model to simulate yield response to water: Ⅰ. Concepts and underlying principles[J]. Agronomy Journal, 2009, 101(3): 426-437. DOI: 10.2134/agronj2008.0139s
doi: 10.2134/agronj2008.0139s
25 VAN DAM J C, GROENENDIJK P, HENDRIKS R F A, et al. Advances of modeling water flow in variably saturated soils with SWAP[J]. Vadose Zone Journal, 2008, 7(2): 640-653. DOI: 10.2136/vzj2007.0060
doi: 10.2136/vzj2007.0060
26 SPITTERS C, VAN KRAALINGCN D, VAN KCULEN H. A simple and universal crop growth simulator: SUCROS87[M]//RABBINGE R, WARD S A, VAN LAAR H H. Simulation and Systems Management in Crop Protection. Wagcningen: Simulation Monographs, Pudoc, 1989: 145-181.
27 SOLER C M T, SENTELHAS P C, HOOGENBOOM G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment[J]. European Journal of Agronomy, 2007, 27: 165-177. DOI: 10.1016/j.eja.2007.03.002
doi: 10.1016/j.eja.2007.03.002
28 MEARNS L O, ROSENZWEIG C, GOLDBERG R. The effect of changes in daily and interannual climatic variability on CERES-Wheat: a sensitivity study[J]. Climatic Change, 1996, 32(3): 257-292.
29 PINNSCHMIDT H O, BATCHELOR W D, TENG P S. Simulation of multiple species pest damage in rice using CERES-rice[J]. Agricultural Systems, 1995, 48(2): 193-222.
30 KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3/4): 267-288. DOI: 10.1016/s1161-0301(02)00108-9
doi: 10.1016/s1161-0301(02)00108-9
31 PAREDES P, WEI Z, LIU Y, et al. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain[J]. Agricultural Water Management, 2015, 152: 57-71. DOI: 10.1016/j.agwat.2014.12.007
doi: 10.1016/j.agwat.2014.12.007
32 JIN X L, KUMAR L, LI Z H, et al. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy, 2018, 92: 141-152. DOI: 10.1016/j.eja.2017.11.002
doi: 10.1016/j.eja.2017.11.002
33 JÉGO G, PATTEY E, LIU J G. Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops[J]. Field Crops Research, 2012, 131: 63-74. DOI: 10.1016/j.fcr.2012.02.012
doi: 10.1016/j.fcr.2012.02.012
34 ZHAO Y, HAN S Y, MENG Y, et al. Transfer-learning-based approach for yield prediction of winter wheat from planet data and SAFY model[J]. Remote Sensing, 2022, 14(21): 5474. DOI: 10.3390/rs14215474
doi: 10.3390/rs14215474
35 陈劲松,黄健熙,林珲,等.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学,2010,40():173-183.
CHEN J S, HUANG J X, LIN H, et al. Rice yield estimation by assimilation remote sensing into crop growth model[J]. Scientia Sinica (Informationis), 2010, 40(): 173-183. (in Chinese with English abstract)
36 JIN H A, LI A N, WANG J D, et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy, 2016, 78: 1-12. DOI: 10.1016/j.eja.2016.04.007
doi: 10.1016/j.eja.2016.04.007
37 LI Z H, WANG J H, XU X G, et al. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation[J]. Remote Sensing, 2015, 7(9): 12400-12418. DOI: 10.3390/rs70912400
doi: 10.3390/rs70912400
38 INES A V M, HONDA K, GUPTA A DAS, et al. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture[J]. Agricultural Water Management, 2006, 83(3): 221-232. DOI: 10.1016/j.agwat.2005.12.006
doi: 10.1016/j.agwat.2005.12.006
39 FANG H L, LIANG S L, HOOGENBOOM G, et al. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model[J]. International Journal of Remote Sensing, 2008, 29(10): 3011-3032. DOI: 10.1080/01431160701408386
doi: 10.1080/01431160701408386
40 刘正春,徐占军,毕如田,等.基于4DVAR和EnKF的遥感信息与作物模型冬小麦估产[J].农业机械学报,2021,52(6):223-231. DOI:10.6041/j.issn.1000-1298.2021.06.023
LIU Z C, XU Z J, BI R T, et al. Winter wheat yield estimation based on assimilated remote sensing date with crop growth model using 4DVAR and EnKF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 223-231. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2021.06.023
41 KANG Y H, ÖZDOĞAN M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach[J]. Remote Sensing of Environment, 2019, 228: 144-163. DOI: 10.1016/j.rse.2019.04.005
doi: 10.1016/j.rse.2019.04.005
42 ZILIANI M G, ALTAF M U, ARAGON B, et al. Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model[J]. Agricultural and Forest Meteorology, 2022, 313: 108736. DOI: 10.1016/j.agrformet.2021.108736
doi: 10.1016/j.agrformet.2021.108736
43 ZARE H, WEBER T K D, INGWERSEN J, et al. Combining crop modeling with remote sensing data using a particle filtering technique to produce real-time forecasts of winter wheat yields under uncertain boundary conditions[J]. Remote Sensing, 2022, 14(6): 1360. DOI: 10.3390/rs14061360
doi: 10.3390/rs14061360
44 黄健熙,黄海,马鸿元,等.遥感与作物生长模型数据同化应用综述[J].农业工程学报,2018,34(21):144-156. DOI:10.11975/j.issn.1002-6819.2018.21.018
HUANG J X, HUANG H, MA H Y, et al. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the CSAE, 2018, 34(21): 144-156. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2018.21.018
45 DONG T F, LIU J G, QIAN B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49: 63-74. DOI: 10.1016/j.jag.2016.02.001
doi: 10.1016/j.jag.2016.02.001
46 KALNAY E, LI H, MIYOSHI T, et al. 4-D-Var or ensemble Kalman filter?[J]. Tellus, 2007, 59(5): 758-773. DOI: 10.1111/j.1600-0870.2007.00261.x
doi: 10.1111/j.1600-0870.2007.00261.x
47 CASA R, VARELLA H, BUIS S, et al. Forcing a wheat crop model with LAI data to access agronomic variables: evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach[J]. European Journal of Agronomy, 2012, 37(1): 1-10. DOI: 10.1016/j.eja.2011.09.004
doi: 10.1016/j.eja.2011.09.004
48 CHAHBI BELLAKANJI A, ZRIBI M, LILI-CHABAANE Z, et al. Forecasting of cereal yields in a semi-arid area using the simple algorithm for yield estimation (SAFY) agro-meteorological model combined with optical SPOT/HRV images[J]. Sensors, 2018, 18(7): 2138. DOI: 10.3390/s18072138
doi: 10.3390/s18072138
49 DONG Y Y, WANG J H, LI C J, et al. Comparison and analysis of data assimilation algorithms for predicting the leaf area index of crop canopies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 188-201. DOI: 10.1109/JSTARS.2012.2208943
doi: 10.1109/JSTARS.2012.2208943
50 YANG H, ZHAO C J, YANG G J, et al. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096076. DOI: 10.1117/1.JRS.9.096076
doi: 10.1117/1.JRS.9.096076
51 杨浩.基于时间序列全极化与简缩极化SAR的作物定量监测研究[D].北京:中国林业科学研究院,2015.
YANG H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. Beijing: Chinese Academy of Forestry, 2015. (in Chinese with English abstract)
52 HEINZEL V, WASKE B, BRAUN M, et al. Remote sensing data assimilation for regional crop growth modelling in the region of Bonn (Germany)[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 3647-3650. DOI: 10.1109/IGARSS.2007.4423636
doi: 10.1109/IGARSS.2007.4423636
53 LIU H L, YANG J Y, DRURY C F, et al. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3): 313-328. DOI: 10.1007/s10705-010-9396-y
doi: 10.1007/s10705-010-9396-y
54 VAZIFEDOUST M, VAN DAM J C, BASTIAANSSEN W G M, et al. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts[J]. International Journal of Remote Sensing, 2009, 30(10): 2523-2545. DOI: 10.1080/01431160802552769
doi: 10.1080/01431160802552769
55 CHEN M, LIU S, TIESZEN L L. Optimization of an ecosystem model through the assimilation of eddy flux observations using a smoothed ensemble Kalman filter[C]//Proceedings of the 2007 Summer Computer Simulation Conference. San Diego: [s. n.], 2007: 875-882. DOI: 10.1145/1357910.1358046
doi: 10.1145/1357910.1358046
56 HASEGAWA T, LI T, YIN X Y, et al. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments[J]. Scientific Reports, 2017, 7: 14858. DOI: 10.1038/s41598-017-13582-y
doi: 10.1038/s41598-017-13582-y
57 YIN X G, KERSEBAUM K C, KOLLAS C, et al. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe[J]. European Journal of Agronomy, 2017, 84: 152-165. DOI: 10.1016/j.eja.2016.12.009
doi: 10.1016/j.eja.2016.12.009
58 DHILLON M S, DAHMS T, KUEBERT-FLOCK C, et al. Modelling crop biomass from synthetic remote sensing time series: example for the DEMMIN test site, Germany[J]. Remote Sensing, 2020, 12(11): 1819. DOI: 10.3390/rs12111819
doi: 10.3390/rs12111819
59 FANG H L, LIANG S L, HOOGENBOOM G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation[J]. International Journal of Remote Sensing, 2011, 32(4): 1039-1065. DOI: 10.1080/01431160903505310
doi: 10.1080/01431160903505310
60 GAO Y J, WALLACH D, HASEGAWA T, et al. Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging[J]. Agricultural and Forest Meteorology, 2021, 311: 108686. DOI: 10.1016/j.agrformet.2021.108686
doi: 10.1016/j.agrformet.2021.108686
61 IIZUMI T, SAKAI T. The global dataset of historical yields for major crops 1981—2016[J]. Scientific Data, 2020, 7: 97. DOI: 10.1038/s41597-020-0433-7
doi: 10.1038/s41597-020-0433-7
62 GROGAN D, FROLKING S, WISSER D, et al. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015[J]. Scientific Data, 2022, 9: 15. DOI: 10.1038/s41597-021-01115-2
doi: 10.1038/s41597-021-01115-2
63 LUO Y C, ZHANG Z, CAO J, et al. Accurately mapping global wheat production system using deep learning algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102823. DOI: 10.1016/j.jag.2022.102823
doi: 10.1016/j.jag.2022.102823
64 CHENG M H, JIAO X Y, SHI L, et al. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing[J]. Scientific Data, 2022, 9: 641. DOI: 10.1038/s41597-022-01761-0
doi: 10.1038/s41597-022-01761-0
65 YANG S Q, HU L, WU H B, et al. Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6253-6269. DOI: 10.1109/JSTARS.2021.3089203
doi: 10.1109/JSTARS.2021.3089203
[1] 那好为,刘瑛涵,赵璐峰,唐建军,胡亮亮,陈欣. 水稻品种间作对甲烷排放的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 270-279.
[2] 祁通,汤胜,周静杰,马庆旭,吴良欢. 长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 109-122.
[3] 温明霞,奚辉,吴韶辉,李娜,陈喜靖. 滴灌施肥对山地柑橘园生产效应的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 566-572.
[4] 谭洪吉,高艳明,李建设,魏文璐. 不同功能肥料对基质栽培樱桃番茄的品质产量及基质环境的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 434-442.
[5] 郑开友,任云,李洪雷,刘静,李强. 玉米/生姜套作模式下玉米株型与行宽对生姜光合特性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 310-320.
[6] 彭志芸,吕旭,伍杂日曲,舒川海,谌洁,向开宏,杨志远,马均. 麦(油)-稻轮作下秸秆还田与氮肥运筹对土壤氮素供应及直播稻产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 45-56.
[7] 周其耀,倪元君,徐顺安,王琼,詹丽钏,冯英. 叶面调理剂对浙江东部镉污染农田水稻主栽品种安全生产的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 768-776.
[8] 吴伊鑫,黄奇伟,叶木军,梁永超,彭红云. 农药减施条件下追施硅肥对水稻抗逆性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 507-516.
[9] 王慧茹,闫思华,高艳明,李建设. 不同整枝方式对樱桃番茄果实商品性、营养品质及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 347-353.
[10] 白岗栓,杜社妮,苗庆丰. 抽穗期补充灌溉对河套灌区地膜春小麦生长的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 21-31.
[11] 魏来,余明艳,覃楠楠,黄冲平,谢颖,孙文波,吴列洪,王伟忠,王国新. 农光耦合系统对田间光照条件和甘薯生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 288-295.
[12] 侯福银,陈应江,杨智青,金崇富,时凯,陈长宽,封功能,李洪山. 猪粪沼液对籼稻农艺性状、产量和饲用品质的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 325-331.
[13] 白岗栓,耿伟,何登峰. 保水剂施用量对秦巴山区土壤特性及烤烟生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 343-354.
[14] 郭长春,张桥,孙永健,武云霞,徐徽,何艳,杨志远,马鹏,彭志芸,马均. 不同产量水平的杂交籼稻品种穴直播茎秆抗倒特性及其差异性比较[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 143-156.
[15] 陈心源,田忍国,沈林章,殷益明,朱利鑫,贾惠娟. 不同蓝红光比例发光二极管对火龙果花芽分化和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 14-22.