Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 109-122    DOI: 10.3785/j.issn.1008-9209.2023.02.131
资源利用与环境保护     
长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响
祁通(),汤胜,周静杰,马庆旭,吴良欢()
浙江大学环境与资源学院,浙江省农业资源与环境重点实验室,浙江 杭州 310058
Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients
Tong QI(),Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU()
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(1533 KB)   HTML
摘要:

水稻覆膜旱作栽培(non-flooding plastic film mulching cultivation, PM)是以地膜覆盖为核心来实现水稻节水生产的综合集成创新技术。然而,在覆盖地膜后,氮肥只能在移栽前作为基肥一次性施用,导致水稻前期营养生长过盛和生育后期潜在缺氮,从而限制了水稻高产。聚合物包膜尿素(polymer coated urea, CR)是一种控释氮肥,在传统淹水栽培(traditional flooding cultivation, TF)模式下已成为提高作物产量和氮肥利用率的最佳管理措施之一,但尚未在PM模式下进行长期定位试验评估。本研究以高产中熟籼型杂交稻‘两优培九’为供试水稻品种,比较在PM和TF 2种栽培模式下施用CR和普通尿素(urea, UR)对水稻产量、氮肥利用率及土壤养分含量的影响。结果表明:与UR相比,在TF和PM模式下施用CR使水稻氮肥利用率分别提高9.2%和15.4%(P<0.05),使水稻产量分别提高8.6%和15.0%(P<0.05)。与TF模式相比,PM模式加速了土壤有机质的分解,降低了土壤全氮、碱解氮含量。与施用UR相比,在PM模式下施用CR能缓解土壤全氮、碱解氮含量的下降,并使经济效益提高16.8%。综上所述,施用CR是解决在PM模式下水稻生育后期缺氮问题的有效途径。

关键词: 水稻覆膜旱作栽培控释氮肥氮肥利用率经济效益作物产量土壤养分    
Abstract:

Non-flooding plastic film mulching cultivation (PM) for rice is a comprehensive and innovative technology that utilizes plastic film covering as the core to achieve water-saving rice production. However, after mulching with plastic film, nitrogen (N) fertilizer can only be applied once as a basal fertilizer before transplanting, which will lead to excessive vegetative growth at the early stage and potential N deficiency at the late growth stage, thereby limiting the high yield of rice. Polymer coated urea (CR) is a controlled release N fertilizer that has become one of the best management measures for improving crop yield and N use efficiency under a traditional flooding cultivation (TF) pattern, but it has not been evaluated in a long-term positioning test under the PM pattern. In this study, taking the high-yielding and medium-maturing indica hybrid rice cultivar ‘Liangyoupeijiu’ as a test material, the effects of applying CR and urea (UR) on rice yield, N use efficiency and soil nutrient contents were compared under the PM and TF patterns. The results showed that, compared with applying UR, applying CR under the TF and PM patterns improved the N use efficiency by 9.2% and 15.4%, respectively (P<0.05), and increased the rice yield by 8.6% and 15.0%, respectively (P<0.05). Compared with the TF pattern, the PM pattern accelerated the decomposition of soil organic matter and reduced the contents of total N and alkali-hydrolyzable N in the soil. Compared with applying UR, applying CR under the PM pattern alleviated the decrease of the total N and alkali-hydrolyzable N contents in the soil and increased the economic benefits by 16.8%. In summary, applying CR is an effective way to solve the problem of N deficiency at the late growth stage of rice under the PM pattern.

Key words: rice    non-flooding plastic film mulching cultivation    controlled release nitrogen fertilizer    nitrogen use efficiency    economic benefits    crop yield    soil nutrients
收稿日期: 2023-02-13 出版日期: 2024-03-01
CLC:  S36  
基金资助: 农田智慧施肥项目(05);浙江省宁波市重大科技任务攻关项目(2021Z101)
通讯作者: 吴良欢     E-mail: 22014120@zju.edu.cn;finm@zju.edu.cn
作者简介: 祁通(https://orcid.org/0000-0001-8845-9630),E-mail:22014120@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
祁通
汤胜
周静杰
马庆旭
吴良欢

引用本文:

祁通,汤胜,周静杰,马庆旭,吴良欢. 长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 109-122.

Tong QI,Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU. Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 109-122.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.02.131        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/109

处理

Treatment

植株吸氮量

Plant N

uptake amount

氮肥利用率

N use

efficiency

水稻产量

Grain yield

有效穗数

Effective

panicle number

每穗粒数

Grains per

panicle

结实率

Grain filling

rate

栽培模式

Cultivation pattern (C)

******NS**NS

氮肥类型

N fertilizer type (N)

******************
C×N***************

年份

Year (Y)

******************
C×Y**********NSNS
N×Y*****************
C×N×Y**NS*****NSNS

处理

Treatment

千粒质量

1 000-grain

mass

有机质含量

Organic matter

content

全氮含量

Tota N

content

碱解氮含量

Alkali-hydrolyzable

N content

有效磷含量

Available P

content

速效钾含量

Available K

content

pH值

pH

value

栽培模式

Cultivation pattern (C)

*******************

氮肥类型

N fertilizer type (N)

********************
C×N**NSNSNSNSNSNS

年份

Year (Y)

******************NS
C×Y*NSNSNS*******
N×Y***NSNSNS******NS
C×N×YNSNSNSNSNSNSNS
表1  水稻产量及其构成因子、植株吸氮量、氮肥利用率、土壤养分含量与栽培模式、氮肥类型、年份及其交互作用的方差分析

年份

Year

氮肥类型

N fertilizer

type

水稻产量

Grain yield/(t/hm2)

植株吸氮量

Plant N uptake amount/(kg/hm2)

有效穗数

Effective panicle number/(104 hm-2)

TFPM

差异

Difference

TFPM

差异

Difference

TFPM

差异

Difference

2008CK6.34b7.09c-0.75**79.2c94.8c-15.6***238b241c-3NS
UR8.32a8.00b0.32*121.0b145.0b-24.0***361a343b18*
CR8.28a8.45a-0.17NS138.8a171.9a-33.1***362a362a0NS
2009CK6.24c6.47c-0.23NS76.3c92.9c-16.6***147c181c-34**
UR8.01b8.15b-0.14NS118.3b133.8b-15.5***334b308b26*
CR8.62a8.69a-0.07NS133.7a163.5a-29.8***341a334a7NS
2010CK6.11c6.25c-0.14NS76.3c87.6c-11.3***167b174c-7NS
UR7.92b7.88b0.04NS106.7b126.2b-19.5***268a268b0NS
CR8.42a8.57a-0.15NS122.2a146.4a-24.2***281a281a0NS
2011CK6.17c6.25c-0.08NS75.1c86.5c-11.4**150b162b-12NS
UR8.08b7.42b0.66**104.5b129.4b-24.9***262a268a-6NS
CR9.08a9.17a-0.09NS117.0a149.6a-32.6***275a281a-6NS
2012CK6.00c6.33c-0.33NS74.7c84.7c-10.0**162b181c-19NS
UR8.25b7.58b0.67*107.4b126.3b-18.9***268a275b-7NS
CR9.42a9.25a0.17NS118.0a146.9a-28.9***278a293a-15NS
2013CK6.10c6.27c-0.17NS76.9c88.2c-11.3**156b175c-19*
UR8.98b8.55b0.43**110.4b128.9b-18.5***274a244b30*
CR10.00a10.10a-0.10NS120.8a149.9a-29.1***275a281a-6NS
2014CK6.05c6.02c0.03NS81.0c89.7c-8.7*156b176b-20NS
UR8.62b8.52b0.10NS117.0b129.2b-12.2***271a275a-4NS
CR10.10a10.30a-0.20NS128.0a152.8a-24.8***275a281a-6NS
2015CK5.97c6.00c-0.03NS76.8c81.4c-4.6NS150b168b-18NS
UR9.65b9.35b0.30NS114.6b118.2b-3.6NS273a268a5NS
CR10.20a10.60a-0.40NS124.9a136.0a-11.1***275a281a-6NS
2016CK7.03c7.43c-0.40NS
UR9.04b8.99b0.05NSNDNDNDND
CR10.15a10.32a-0.17NS
2017CK5.93c6.53c-0.60**
UR7.03b6.81b0.22NSNDNDNDND
CR7.97a8.44a-0.47*
2018CK6.33b6.18c0.15NS75.5c83.6c-8.1*162c154c8NS
UR8.02a7.03b0.99**113.0b129.1b-16.1***251b224b27**
CR8.07a8.54a-0.47NS122.4a143.4a-21.0***276a284a-8NS
2019CK6.25c6.51c-0.26NS72.9c80.4c-7.6*151c155c-4NS
UR7.91b7.49b0.42*109.7b122.5b-12.8*261b235b26***
CR8.67a9.04a-0.37NS122.8a144.9a-22.1***285a297a-12*
2020CK6.79b6.81b-0.02NS75.8c87.0c-11.2**150c169b-19**
UR9.50a9.45a0.05NS114.3b134.3b-20.0**265b278a-13NS
CR9.62a9.47a0.15NS124.3a146.5a-22.2***278a286a-8NS
表2  栽培模式、氮肥类型和年份的交互作用对水稻产量、植株吸氮量和有效穗数的影响

氮肥类型

N fertilizer

type

有效穗数

Effective panicle

number/(104 hm-2)

每穗粒数

Grains per

panicle

结实率

Grain filling

rate/%

千粒质量

1 000-grain

mass/g

水稻产量

Grain yield/

(t/hm2)

氮肥利用率

N use

efficiency/%

TFPMTFPMTFPMTFPMTFPMTFPM
CK162bB176cA116c112c80.2c80.1c25.4b25.3c6.25c6.47c
UR280a271b136b138b86.4b84.7b26.7a26.8b8.41b8.09b26.7bB31.4bA
CR290a296a151a146a88.5a88.6a26.8aB27.3aA9.13a9.30a35.9aB46.8aA
表3  栽培模式和氮肥类型的交互作用对水稻产量及其构成因子和氮肥利用率的影响
图1  栽培模式/氮肥类型与年份的交互作用对水稻氮肥利用率的影响短栅上不同小写字母表示同一栽培模式/氮肥类型的不同年份间在P<0.05水平差异有统计学意义;*、**、***分别表示同一年份不同栽培模式/氮肥类型间在P<0.05、P<0.01、P<0.001水平差异有统计学意义。

参量

Parameter

水稻产量

Grain yield

植株吸氮量

Plant N

uptake amount

氮肥利用率

N use

efficiency

有效穗数

Effective

panicle number

每穗粒数

Grains per

panicle

结实率

Grain filling

rate

千粒质量

1 000-grain

mass

水稻产量

Grain yield

1.000

植株吸氮量

Plant N uptake amount

0.787**1.000

氮肥利用率

N use efficiency

0.351**0.928**1.000

有效穗数

Effective panicle number

0.759**0.865**0.491**1.000

每穗粒数

Grains per panicle

0.752**0.767**0.435**0.822**1.000

结实率

Grain filling rate

0.603**0.620**0.344**0.728**0.662**1.000

千粒质量

1 000-grain mass

0.522**0.525**0.1050.487**0.402**0.544**1.000
表4  不同栽培模式和氮肥类型下水稻产量及其构成因子、植株吸氮量、氮肥利用率间的相关性分析

氮肥类型

N fertilizer type

pH值

pH

value

有机质

Organic matter/

(g/kg)

全氮

Total N/

(g/kg)

碱解氮

Alkali-hydrolyzable N/

(mg/kg)

有效磷

Available P/

(mg/kg)

速效钾

Available K/

(mg/kg)

CK5.37b17.6b1.06c99.6c21.5c38.9c
UR5.38b18.1a1.17b108.5b23.2b41.1b
CR5.42a18.2a1.23a112.3a23.8a42.7a
表5  不同氮肥类型对土壤理化性质的影响

栽培模式

Cultivation pattern

pH值

pH

value

有机质

Organic matter/

(g/kg)

全氮

Total N/

(g/kg)

碱解氮

Alkali-hydrolyzable N/

(mg/kg)

有效磷

Available P/

(mg/kg)

速效钾

Available K/

(mg/kg)

TF5.31b18.3a1.19a108.9a21.8b42.5a
PM5.47a17.6b1.13b104.6b23.9a39.3b
表6  不同栽培模式对土壤理化性质的影响
图2  不同栽培模式和年份的交互作用对土壤有机质和碱解氮含量的影响短栅上不同小写字母表示同一栽培模式不同年份间在P<0.05水平差异有统计学意义;*、**分别表示同一年份不同栽培模式间在P<0.05、P<0.01水平差异有统计学意义。
图3  不同栽培模式和年份的交互作用对土壤有效磷、速效钾含量和pH值的影响短栅上不同小写字母表示同一栽培模式不同年份间在P<0.05水平差异有统计学意义;*、**、***分别表示同一年份不同栽培模式间在P<0.05、P<0.01、P<0.001水平差异有统计学意义。

处理

Treatment

总收入

Total

income

地膜费用

Plastic

film cost

覆膜的劳动力成本

Labor cost of covering

plastic film

氮肥费用

N fertilizer

cost

施用氮肥的劳动力成本

Labor cost of N

fertilizer application

能源费用

Energy

cost

其他费用

Other

cost

利润

Profit

TCK16 2602 0403 39510 825
TUR21 8657807602 0403 39514 890
TCR23 7461 8503802 0403 39516 081
PCK16 8267502004903 39511 991
PUR21 0267502007807604903 39514 651
PCR24 1757502001 8503804903 39517 110
表7  不同栽培模式与不同氮肥类型组合的年均收入、成本及利润 (yuan/(hm2∙a))

氮肥类型

N fertilizer type

NH4+-N/(mg/kg)NO3-N/(mg/kg)
TFPMTFPM
CK3.27bA3.09bB2.70a2.44b
UR3.27b3.03b2.48a2.67b
CR6.92aA4.70aB3.01aB4.34aA
表8  连续覆膜旱作并施用包膜尿素13年对土壤NH4+-N和NO3--N含量的影响
1 ROSA L, CHIARELLI D D, RULLI M C, et al. Global agricultural economic water scarcity[J]. Science Advances, 2020, 6(18): eaaz6031. DOI: 10.1126/sciadv.aaz6031
doi: 10.1126/sciadv.aaz6031
2 QIAN Q, GUO L B, SMITH S M, et al. Breeding high-yield superior quality hybrid super rice by rational design[J]. National Science Review, 2016, 3(3): 283-294. DOI: 10.1093/nsr/nww006
doi: 10.1093/nsr/nww006
3 TAO Y Y, QU H, LI Q J, et al. Potential to improve N uptake and grain yield in water saving ground cover rice production system[J]. Field Crops Research, 2014, 168: 101-108. DOI: 10.1016/j.fcr.2014.08.014
doi: 10.1016/j.fcr.2014.08.014
4 XIN F F, XIAO X M, DONG J W, et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000—2017[J]. Science of the Total Environment, 2020, 711: 135183. DOI: 10.1016/j.scitotenv.2019.135183
doi: 10.1016/j.scitotenv.2019.135183
5 LI L B, LI F S, DONG Y F, et al. Greenhouse gas emissions and global warming potential in double-cropping rice fields as influenced by two water-saving irrigation modes in South China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2617-2630. DOI: 10.1007/s42729-020-00328-5
doi: 10.1007/s42729-020-00328-5
6 HE Y, ZHANG B, WU Y L, et al. A pilot nationwide baseline survey on the concentrations of neonicotinoid insecticides in tap water from China: implication for human exposure[J]. Environmental Pollution, 2021, 291: 118117. DOI: 10.1016/j.envpol.2021.118117
doi: 10.1016/j.envpol.2021.118117
7 SUN Y J, MA J, SUN Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2021, 127: 85-98. DOI: 10.1016/j.fcr.2011.11.015
doi: 10.1016/j.fcr.2011.11.015
8 LIANG H, HU K L, QIN W, et al. Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies[J]. Field Crops Research, 2019, 233: 70-79. DOI: 10.1016/j.fcr.2019.01.003
doi: 10.1016/j.fcr.2019.01.003
9 路兴花,吴良欢,庞林江,等.连续覆膜旱作稻氮、磷、钾养分分布特征探讨[J].土壤通报,2010,41(1):145-149. DOI:10.19336/j.cnki.trtb.2010.01.031
LU X H, WU L H, PANG L J, et al. Distribution of N, P and K in rice plant under a long-term located plastic film mulching cultivation[J]. Chinese Journal of Soil Science, 2010, 41(1): 145-149. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2010.01.031
10 GUO L, LIU M J, ZHANG Y N, et al. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system[J]. European Journal of Agronomy, 2018, 92: 9-16. DOI: 10.1016/j.eja.2017.09.005
doi: 10.1016/j.eja.2017.09.005
11 LYU Y F, YANG X D, PAN H Y, et al. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: a study case from Southwest China[J]. Journal of Cleaner Production, 2021, 293: 126198. DOI: 10.1016/j.jclepro.2021.126198
doi: 10.1016/j.jclepro.2021.126198
12 DING W C, XU X P, HE P P, et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis[J]. Field Crops Research, 2018, 227: 11-18. DOI: 10.1016/j.fcr.2018.08.001
doi: 10.1016/j.fcr.2018.08.001
13 闫鸿媛.长期施肥下我国典型土壤粮食作物氮肥利用率时空演变特征[D].武汉:华中农业大学,2010.
YAN H Y. Tempo-spatial variation of nitrogen use efficiency of grain food as affected by long-term fertilization in the typical soil of China[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract)
14 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
15 WANG D Y, XU C M, YE C, et al. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice[J]. Field Crops Research, 2018, 229: 8-16. DOI: 10.1016/j.fcr.2018.09.008
doi: 10.1016/j.fcr.2018.09.008
16 CHEN J, FAN X L, ZHANG L D, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. DOI: 10.1002/cssc.202000455
doi: 10.1002/cssc.202000455
17 ZHANG G B, YANG Y T, HUANG Q, et al. Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field[J]. European Journal of Agronomy, 2020, 114: 126007. DOI: 10.1016/j.eja.2020.126007
doi: 10.1016/j.eja.2020.126007
18 LIU H Y, WON P L P, BANAYO N P M, et al. Late-season nitrogen applications improve grain yield and fertilizer-use efficiency of dry direct-seeded rice in the tropics[J]. Field Crops Research, 2019, 233: 114-120. DOI: 10.1016/j.fcr.2019.01.010
doi: 10.1016/j.fcr.2019.01.010
19 赵倩,姜鸿明,孙美芝,等.山东省区试小麦产量与产量构成因素的相关和通径分析[J].中国农学通报,2011,27(7):42-45.
ZHAO Q, JIANG H M, SUN M Z, et al. Correlation and path analysis of yield components of winter wheat varieties with high yield potential cultured in regional trials of Shandong Province[J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 42-45. (in Chinese with English abstract)
20 NASAR J, KHAN W, KHAN M Z, et al. Photosynthetic activities and photosynthetic nitrogen use efficiency of maize crop under different planting patterns and nitrogen fertilization[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(3): 2274-2284. DOI: 10.1007/s42729-021-00520-1
doi: 10.1007/s42729-021-00520-1
21 VEJAN P, KHADIRAN T, ABDULLAH R, et al. Controlled release fertilizer: a review on developments, applications and potential in agriculture[J]. Journal of Controlled Release, 2021, 339: 321-334. DOI: 10.1016/j.jconrel.2021.10.003
doi: 10.1016/j.jconrel.2021.10.003
22 XU R, CHEN S, XU C M, et al. Polymer-coated urea application can increase both grain yield and nitrogen use efficiency in japonica-indica hybrid rice[J]. The Journal of Agricultural Science, 2023, 161(1): 51-59. DOI: 10.1017/S0021859622000673
doi: 10.1017/S0021859622000673
23 SHI X R, HU K L, BATCHELOR W D, et al. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River[J]. Agricultural Water Management, 2020, 228: 105877. DOI: 10.1016/j.agwat.2019.105877
doi: 10.1016/j.agwat.2019.105877
24 WANG L, XUE C, PAN X, et al. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China[J]. Frontiers in Plant Science, 2018, 9: 999. DOI: 10.3389/fpls.2018.00999
doi: 10.3389/fpls.2018.00999
25 ZHU W, YANG J S, YAO R J, et al. Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China[J]. Environmental Pollution, 2021, 286: 117330. DOI: 10.1016/j.envpol.2021.117330
doi: 10.1016/j.envpol.2021.117330
26 刘新宇,巨晓棠,张丽娟,等.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(2):296-303. DOI:10.11674/zwyf.2010.0206
LIU X Y, JU X T, ZHANG L J, et al. Effects of different N rates on fate of N fertilizer and balance of soil N of winter wheat[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 296-303. (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0206
27 LI Y S, WU L H, ZHAO L M, et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]. Soil and Tillage Research, 2007, 93(2): 370-378. DOI: 10.1016/j.still.2006.05.010
doi: 10.1016/j.still.2006.05.010
28 LIU X J, WANG J C, LU S H, et al. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems[J]. Field Crops Research, 2003, 83(3): 297-311. DOI: 10.1016/S0378-4290(03)00079-0
doi: 10.1016/S0378-4290(03)00079-0
29 LIN Y X, YE G P, KUZYAKOV Y, et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa[J]. Soil Biology and Biochemistry, 2019, 134: 187-196. DOI: 10.1016/j.soilbio.2019.03.030
doi: 10.1016/j.soilbio.2019.03.030
30 尹金来,周春霖,沈其荣,等.水稻水作与旱作条件下土壤和植物磷素有效性的研究[J].南京农业大学学报,2002,25(4):53-56.
YIN J L, ZHOU C L, SHEN Q R, et al. Availabilities of phosphorus in soil and rice plant under waterlogged and aerobic conditions[J]. Journal of Nanjing Agricultural University, 2002, 25(4): 53-56. (in Chinese with English abstract)
31 ZHANG W L, LI C B, LI G T, et al. Biochar alters inorganic phosphorus fractions in tobacco-growing soil[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1689-1699. DOI: 10.1007/s42729-021-00472-6
doi: 10.1007/s42729-021-00472-6
32 周旋,丁俊山,吴良欢,等.不同工艺复合肥对小白菜产量和品质的影响[J].浙江大学学报(农业与生命科学版),2016,42(5):626-636. DOI:10.3785/j.issn.1008-9209.2016.03.311
ZHOU X, DING J S, WU L H, et al. Effects of compound fertilizers by different processes on yield and quality of pakchoi (Brassica chinensis L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 626-636. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2016.03.311
33 胡敏,向永生,鲁剑巍.石灰用量对酸性土壤pH值及有效养分含量的影响[J].中国土壤与肥料,2017(4):72-77. DOI:10.11838/sfsc.20170411
HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils[J]. Soil and Fertilizer Sciences in China, 2017(4): 72-77. (in Chinese with English abstract)
doi: 10.11838/sfsc.20170411
34 张小翠,戴其根,胡星星,等.不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响[J].作物学报,2012,38(8):1494-1503. DOI:10.3724/SP.J.1006.2012.01494
ZHANG X C, DAI Q G, HU X X, et al. Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures[J]. Acta Agronomica Sinica, 2012, 38(8): 1494-1503. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01494
35 郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194. DOI:10.11674/zwyf.2006.0208
ZHENG S X, NIE J, DAI P A, et al. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice[J]. Plant Nutrition and Fertilizer Science, 2006, 12(2): 188-194. (in Chinese with English abstract)
doi: 10.11674/zwyf.2006.0208
36 李新乐,侯向阳,穆怀彬,等.连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响[J].草业学报,2015,24(8):218-224. DOI:10.11686/cyxb2014388
LI X L, HOU X Y, MU H B, et al. P fertilization effects on the accumulation, transformation and availability of soil phosphorus[J]. Acta Prataculturae Sinica, 2015, 24(8): 218-224. (in Chinese with English abstract)
doi: 10.11686/cyxb2014388
37 周启运,郑重谊,荊永锋,等.湘南稻作烟区不同土层土壤有机质含量与氮磷钾关系研究[J].作物杂志,2021(5):114-119. DOI:10.16035/j.issn.1001-7283.2021.05.017
ZHOU Q Y, ZHENG Z Y, JING Y F, et al. Study on soil organic matter content and its relationship with nitrogen, phosphorus and potassium in different soil layers of rice-growing tobacco areas in Southern Hunan[J]. Crops, 2021(5): 114-119. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2021.05.017
38 宋婷,王红丽,陈年来,等.旱地全膜覆土穴播和全沙覆盖平作对小麦田土壤水分和产量的调节机制[J].中国生态农业学报,2014,22(10):1174-1181. DOI:10.13930/j.cnki.cjea.140216
SONG T, WANG H L, CHEN N L, et al. Regulation of whole field soil-plastic mulching with bunch planting and whole field sand mulching with flat planting on soil moisture and yield of spring wheat in semiarid dryland areas[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1174-1181. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.140216
39 李世朋,蔡祖聪,杨浩,等.长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响[J].生态学报,2009,29(5):2489-2498. DOI:10.3321/j.issn:1000-0933.2009.05.036
LI S P, CAI Z C, YANG H, et al. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties[J]. Acta Ecologica Sinica, 2009, 29(5): 2489-2498. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2009.05.036
40 李毅,王全九,王文焰,等.覆膜开孔土壤蒸发的水盐分布特征及运移规律研究[J].植物营养与肥料学报,2005,11(2):187-193. DOI:10.3321/j.issn:1008-505X.2005.02.009
LI Y, WANG Q J, WANG W Y, et al. Distribution and movement characteristics of soil water and soil salt during evaporation from perforated plastic mulch[J]. Plant Nutrition and Fertilizer Science, 2005, 11(2): 187-193. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2005.02.009
[1] 温佳,梁喜凤,王永维. 基于改进的DeepLabV3+网络模型的杂交水稻育种父母本语义分割研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 893-902.
[2] 曾慧玲,莫祖意,蒲巧贤,王家澍,范凯,李兆伟. 水稻OsSPL3启动子克隆及表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 319-327.
[3] 杨临泽,寿惠霞. 水稻根系分泌物脱氧麦根酸对根际和根内细菌群落组成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 376-388.
[4] 吕梦琪, Sunghwan JUNG, 麻志宏, 万亮, 孙大伟, 岑海燕. 基于无损力学平台的水稻倒伏表型分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 129-140.
[5] 张健男,王依名,张洁净,陈磊,罗金燕,易建平,李斌,安千里. 利用实时荧光定量PCR和数字PCR检测鉴定水稻细菌性条斑病菌[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 55-64.
[6] 巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
[7] 谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.
[8] 吴伊鑫,黄奇伟,叶木军,梁永超,彭红云. 农药减施条件下追施硅肥对水稻抗逆性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 507-516.
[9] 李宏宇,李坤,杨知. 基于时间序列全极化合成孔径雷达的水稻物候期反演[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 404-414.
[10] 刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.
[11] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[12] 怀燕,陈照明,张耿苗,姜铭北,许剑锋,王强. 水稻侧深施肥技术的氮肥减施效应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 217-224.
[13] 傅理,陆颖,谢应忠,马红彬,邢恩德,田秀民,聂明鹤. 短期休牧对荒漠草原区家庭牧场植被及土壤性质的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 563-573.
[14] 尹华锋, 苏程, 冯存均, 李玉琴, 黄智才, 章孝灿. 基于样本知识挖掘的高分辨率遥感图像水稻种植信息提取方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 765-774.
[15] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.