Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (2): 270-279    DOI: 10.3785/j.issn.1008-9209.2024.03.101
研究论文     
水稻品种间作对甲烷排放的影响
那好为(),刘瑛涵,赵璐峰,唐建军,胡亮亮(),陈欣
浙江大学生命科学学院,浙江 杭州 310058
Impact of intercropping of rice cultivars on methane emissions
Haowei NA(),Yinghan LIU,Lufeng ZHAO,Jianjun TANG,Liangliang HU(),Xin CHEN
College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(2465 KB)   HTML
摘要:

作物品种多样化种植是提高农业生态系统功能的有效措施,但不同品种混合种植能否影响温室气体排放仍然缺乏研究。本研究以水稻为例,通过原位盆栽试验,研究品种间隔种植(间作)对甲烷排放的影响。以甲烷高排放品种常农粳8号、皖稻153以及甲烷低排放品种苏香粳100、Ⅱ优084为供试材料,设置8个处理,包括4个水稻品种单一种植(单作),即常农粳8号单作(记作CN)、皖稻153单作(WD)、苏香粳100单作(SX)、Ⅱ优084单作(ⅡY),以及2个甲烷高排放品种与2个甲烷低排放品种间作,即常农粳8号+Ⅱ优084间作(CN+ⅡY)、常农粳8号+苏香粳100间作(CN+SX)、皖稻153+Ⅱ优084间作(WD+ⅡY)、皖稻153+苏香粳100间作(WD+SX)。间作品种按1∶1的株数比例间隔种植。结果表明,4个间作处理均能显著增加或维持水稻产量。不同间作处理的甲烷排放通量存在显著差异,与期望值相比,CN+SX处理显著降低甲烷的排放,而CN+ⅡY、WD+ⅡY处理则显著增加甲烷排放。与甲烷高排放品种的单作处理相比,苏香粳100与2个甲烷高排放品种间作时均能显著降低生长季土壤产甲烷古菌mcrA基因平均丰度,但Ⅱ优084仅在与皖稻153间作时有显著作用。除CN+SX外,其余3个间作处理下生长季土壤甲烷氧化菌pmoA基因平均丰度均显著低于所对应的单作处理。本研究认为可以通过水稻品种间作在获得增产的同时降低甲烷排放,但品种间作组合需要仔细筛选。

关键词: 水稻品种间作甲烷排放产甲烷古菌甲烷氧化菌水稻产量    
Abstract:

Diversified farming of crop cultivars is an effective measure for improving agroecosystem functions. However, there is still a lack of research on the effects of mixed planting of different cultivars on greenhouse gas (GHG) emissions. In this study, rice was used as an example to explore the impact of intercropping of different cultivars on methane (CH4) emissions through an in situ pot experiment. The cultivars Changnongjing No. 8 and Wandao No. 153, which have high CH4 emissions, and the cultivars Suxiangjing No. 100 and Ⅱ-you No. 084, which have low CH4 emissions, were selected as experimental materials. A total of eight treatments were set up in this study. The monocultures of four cultivars were as follows: the monoculture of Changnongjing No. 8 (referred to as CN), the monoculture of Wandao No. 153 (WD), the monoculture of Suxiangjing No. 100 (SX) and the monoculture of Ⅱ?you No. 084 (ⅡY). Additionally, intercropping systems were set up between two CH4 high-emission cultivars and two CH4 low-emission cultivars: intercropping of Changnongjing No. 8 and Suxiangjing No. 100 (CN+SX), intercropping of Changnongjing No. 8 and Ⅱ?you No. 084 (CN+ⅡY), intercropping of Wandao No. 153 and Suxiangjing No. 100 (WD+SX), and intercropping of Wandao No. 153 and Ⅱ?you No. 084 (WD+ⅡY). In the intercropping treatments, the two cultivars were planted at a ratio of 1∶1. The results showed that all the intercropping treatments either significantly increased or maintained rice yield, and that the CH4 emissions varied significantly among the different intercropping treatments. Compared with the expected values, the CN+SX treatment resulted in a significant reduction in CH4 emissions, while the CN+ⅡY and WD+ⅡY treatments significantly increased the CH4 emissions. Compared with the monoculture of CH4 high-emission cultivars, the intercropping of Suxiangjing No. 100 with two CH4 high-emission cultivars significantly reduced the average abundance of the methanogenic archaeal mcrA gene during the growing season, but Ⅱ?you No. 084 had a significant effect only when intercropped with Wandao No. 153. For the intercropping treatments except CN+SX, the average abundance of the methanotrophic bacterial pmoA gene during the growing season was significantly lower than that of the corresponding monoculture. This study suggested that the intercropping of rice cultivars can enhance rice yield and also reduce CH4 emissions, but the appropriate combinations of intercropped cultivars should be selected carefully.

Key words: rice cultivar    intercropping    methane (CH4) emission    methanogenic archaea    methanotrophic bacterium    rice yield
收稿日期: 2024-03-10 出版日期: 2024-04-30
CLC:  S181  
基金资助: 浙江省公益技术应用研究资助项目(LGN22C030002);浙江省“领雁”研发攻关计划项目(2022C02058);浙江省“尖兵”研发攻关计划项目(2022C02008);国家重点研发计划项目(2023YFD2401801)
通讯作者: 胡亮亮     E-mail: 22107040@zju.edu.cn;zjuhull@126.com
作者简介: 那好为(https://orcid.org/0009-0005-5339-6103),E-mail:22107040@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
那好为
刘瑛涵
赵璐峰
唐建军
胡亮亮
陈欣

引用本文:

那好为,刘瑛涵,赵璐峰,唐建军,胡亮亮,陈欣. 水稻品种间作对甲烷排放的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 270-279.

Haowei NA,Yinghan LIU,Lufeng ZHAO,Jianjun TANG,Liangliang HU,Xin CHEN. Impact of intercropping of rice cultivars on methane emissions. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 270-279.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2024.03.101        https://www.zjujournals.com/agr/CN/Y2024/V50/I2/270

图1  盆栽试验设计现场图A. 盆栽试验图;B. 苏香粳100单作处理的盆栽;C. Ⅱ优084(左侧)和皖稻153(右侧)间作处理的盆栽。
图2  不同水稻品种种植方式对CH4 排放的影响A. 4个水稻品种单作处理下的CH4排放;B.间作处理CN+SX的CH4排放;C.间作处理CN+ⅡY的CH4排放;D.间作处理WD+SX的CH4排放;E.间作处理WD+ⅡY的CH4排放。图中上方数据表示生长季CH4排放总量,g/m2。图A中不同小写字母表示不同处理间在P<0.05水平差异有统计学意义。图B~E中,灰色虚线表示期望值,实线表示实际观测值,不同小写字母表示实际观测值与期望值在P<0.05水平差异有统计学意义。Exp:期望值。

处理

Treatment

分蘖期

Tillering stage

孕穗期

Booting stage

抽穗期

Heading stage

成熟期

Maturing stage

平均

Average

CN1.24±0.04e7.43±0.69a2.50±0.13b2.45±0.10bc3.41±0.18b
WD3.87±0.14b5.90±0.05b3.18±0.02a2.88±0.04a3.96±0.04a
SX2.92±0.06c6.08±0.29b1.47±0.41c2.28±0.06cd3.19±0.09bc
ⅡY1.48±0.11d4.69±0.17c2.37±0.18b2.04±0.03de2.65±0.07d
CN+SX1.09±0.03e6.27±0.48b1.64±0.08c1.19±0.04f2.55±0.12d
CN+ⅡY4.32±0.03a4.26±0.18c2.41±0.06b2.45±0.18bc3.36±0.06b
WD+SX2.74±0.07c4.64±0.09c2.76±0.18ab2.66±0.07ab3.20±0.03bc
WD+ⅡY4.40±0.06a4.61±0.04c1.39±0.06c1.87±0.05e3.07±0.03c
表1  不同水稻品种种植方式对生长季内土壤产甲烷古菌mcrA基因丰度的影响

处理

Treatment

分蘖期

Tillering stage

孕穗期

Booting stage

抽穗期

Heading stage

成熟期

Maturing stage

平均

Average

CN2.93±0.06d7.36±0.23a5.00±0.16a6.01±0.59a5.33±0.15a
WD3.29±0.06b5.40±0.14c4.32±0.43bc5.57±0.08ab4.65±0.14b
SX3.77±0.08a6.03±0.27b3.92±0.18cd4.79±0.28bc4.63±0.13b
ⅡY2.98±0.04cd5.29±0.27c4.78±0.07ab4.68±0.44bc4.43±0.13bc
CN+SX3.00±0.08cd6.22±0.23b5.02±0.23a6.21±0.14a5.11±0.08a
CN+ⅡY3.01±0.04cd2.82±0.24d5.17±0.15a4.96±0.23bc3.99±0.11d
WD+SX3.66±0.06a5.22±0.18c3.49±0.07d4.22±0.13c4.15±0.07cd
WD+ⅡY3.15±0.05bc3.16±0.18d3.80±0.11cd5.55±0.11ab3.92±0.05d
表2  不同水稻品种种植方式对生长季内土壤甲烷氧化菌pmoA基因丰度的影响 (106 copies/g)

处理

Treatment

品种

Cultivar

产量

Yield/(t/hm2)

LER

单作

Monoculture

间作

Intercropping

CN+SX常农粳8号12.14±1.11a8.93±0.55b1.12±0.05*
苏香粳1006.43±0.75b9.64±0.64a
CN+ⅡY常农粳8号12.14±1.11a9.60±0.30a1.11±0.08
Ⅱ优0845.47±0.35b7.77±0.80a
WD+SX皖稻1535.57±0.64b8.43±0.75a1.35±0.08**
苏香粳1006.43±0.75a7.65±0.39a
WD+ⅡY皖稻1535.57±0.64a6.48±0.57a1.30±0.10*
Ⅱ优0845.47±0.35b7.85±0.84a
表3  不同水稻品种种植方式对水稻产量的影响

处理

Treatment

品种

Cultivar

每穴有效穗数

Valid panicle numbers per hill

每穗粒数

Grain numbers per panicle

结实率

Kernel set rate/%

间作

Intercropping

单作

Monoculture

间作

Intercropping

单作

Monoculture

间作

Intercropping

单作

Monoculture

CN+SX常农粳8号6.37±0.116.40±0.6882.81±0.96b122.22±2.17a91.26±1.5588.61±2.15
苏香粳1005.65±0.076.10±0.22108.98±1.67a83.91±0.70b85.48±2.2476.62±4.08
CN+ⅡY常农粳8号6.54±0.066.40±0.6895.15±1.67b122.22±2.17a89.26±2.1588.61±2.15
Ⅱ优0845.26±0.21b5.92±0.15a99.37±2.22a74.14±1.71b88.99±1.98a70.83±4.52b
WD+SX皖稻1536.26±0.136.20±0.50123.43±2.15a81.97±1.31b83.07±1.5183.70±3.61
苏香粳1005.34±0.17b6.10±0.22a101.61±2.92a83.91±0.70b85.00±0.7876.62±4.08
WD+ⅡY皖稻1536.17±0.156.20±0.50104.44±2.75a81.97±1.31b82.66±4.2183.70±3.61
Ⅱ优0846.41±0.455.92±0.1571.50±3.3774.14±1.7178.65±1.1970.83±4.52

处理

Treatment

品种

Cultivar

千粒质量

1 000-grain mass/g

地上部生物量

Aboveground biomass/(g/plant)

间作 Intercropping单作 Monoculture间作 Intercropping单作 Monoculture
CN+SX常农粳8号27.69±1.0326.66±1.13225.70±2.60b266.32±3.74a
苏香粳10027.38±1.3124.49±2.18229.43±1.90b314.90±4.98a
CN+ⅡY常农粳8号25.94±0.5926.66±1.13355.75±2.60a266.32±3.74b
Ⅱ优08424.83±1.6226.56±1.13154.03±1.40b257.32±3.60a
WD+SX皖稻15319.69±1.6519.41±0.50259.21±3.83b349.00±4.19a
苏香粳10025.01±1.4724.49±2.18165.69±3.14b314.90±4.98a
WD+ⅡY皖稻15318.23±0.9919.41±0.50294.92±1.27b349.00±4.19a
Ⅱ优08432.41±0.92a26.56±1.13b266.72±3.01257.32±3.60
表4  不同水稻品种种植方式下的产量结构
1 YAN X Y, AKIYAMA H, YAGI K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovern-mental Panel on Climate Change Guidelines[J]. Global Biogeo-chemical Cycles, 2009, 23(2): GB2002. DOI: 10.1029/2008GB003299
doi: 10.1029/2008GB003299
2 ZHANG W, YU Y Q, HUANG Y, et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050[J]. Global Change Biology, 2011, 17(12): 3511-3523. DOI: 10.1111/j.1365-2486.2011.02495.x
doi: 10.1111/j.1365-2486.2011.02495.x
3 戴然欣,赵璐峰,唐建军,等.稻渔系统碳固持与甲烷排放特征[J].中国生态农业学报(中英文),2022,30(4):616-629. DOI:10.12357/cjea.20210811
DAI R X, ZHAO L F, TANG J J, et al. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616-629. (in Chinese with English abstract)
doi: 10.12357/cjea.20210811
4 AULAKH M S, WASSMANN R, BUENO C, et al. Charac-terization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant Biology, 2001, 3(2): 139-148. DOI: 10.1055/s-2001-12905
doi: 10.1055/s-2001-12905
5 TOKIDA T, ADACHI M, CHENG W G, et al. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology, 2011, 17(11): 3327-3337. DOI: 10.1111/j.1365-2486.2011.02475.x
doi: 10.1111/j.1365-2486.2011.02475.x
6 JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4728-4738. DOI: 10.1111/gcb.13737
doi: 10.1111/gcb.13737
7 孟冬梅.水稻根系通气组织的泌氧能力研究[D].北京:北京林业大学,2008.
MENG D M. Study on the capability of rice root aeren-chyma to oxygen transportation[D]. Beijing: Beijing Forestry University, 2008. (in Chinese with English abstract)
8 曹云英,朱庆森,郎有忠,等.水稻品种及栽培措施对稻田甲烷排放的影响[J].江苏农业研究,2000,21(3):22-27. DOI:10.3969/j.issn.1671-4652.2000.03.005
CAO Y Y, ZHU Q S, LANG Y Z, et al. Effect of rice varieties and cultivation approach on methane emission from paddy rice[J]. Jiangsu Agricultural Research, 2000, 21(3): 22-27. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-4652.2000.03.005
9 AULAKH M S, BODENBENDER J, WASSMANN R, et al. Methane transport capacity of rice plants. Ⅱ. Variations among different rice cultivars and relationship with morphological characteristics[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 367-375.
10 ZHANG G B, YU H Y, FAN X F, et al. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem[J]. Scientific Reports, 2016, 6: 27065. DOI: 10.1038/srep27065
doi: 10.1038/srep27065
11 傅志强,黄璜,何保良,等.水稻植株通气系统与稻田CH4排放相关性研究[J].作物学报,2007,33(9):1458-1467. DOI:10.3321/j.issn:0496-3490.2007.09.011
FU Z Q, HUANG H, HE B L, et al. Correlation between rice plant aerenchyma system and methane emission from paddy field[J]. Acta Agronomica Sinica, 2007, 33(9): 1458-1467. (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.09.011
12 YANG T, WANG M J, WANG X D, et al. Product type, rice variety, and agronomic measures determined the efficacy of enhanced-efficiency nitrogen fertilizer on the CH4 emission and rice yields in paddy fields: a meta-analysis[J]. Agronomy, 2022, 12(10): 2240. DOI: 10.3390/agronomy12102240
doi: 10.3390/agronomy12102240
13 QIAO X, BEI S K, LI H G, et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems[J]. Plant and Soil, 2016, 406(1/2): 173-185. DOI: 10.1007/s11104-016-2863-8
doi: 10.1007/s11104-016-2863-8
14 ZHANG C C, DONG Y, TANG L, et al. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis[J]. European Journal of Plant Pathology, 2019, 154(4): 931-942. DOI: 10.1007/s10658-019-01711-4
doi: 10.1007/s10658-019-01711-4
15 BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1): 107-117. DOI: 10.1111/nph.13132
doi: 10.1111/nph.13132
16 ZHU J Q, VAN DER WERF W, ANTEN N P R, et al. The contribution of phenotypic plasticity to complementary light capture in plant mixtures[J]. New Phytologist, 2015, 207(4): 1213-1222. DOI: 10.1111/nph.13416
doi: 10.1111/nph.13416
17 NASAR J, ZHAO C J, KHAN R, et al. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes[J]. Frontiers in Plant Science, 2023, 13: 1077948. DOI: 10.3389/fpls.2022.1077948
doi: 10.3389/fpls.2022.1077948
18 DARRAS S, MCKENZIE R H, OLSON M A, et al. Influence of genotypic mixtures on field pea yield and competitive ability[J]. Canadian Journal of Plant Science, 2015, 95(2): 315-324. DOI: 10.4141/cjps-2014-253
doi: 10.4141/cjps-2014-253
19 KHALIQ A, MATLOOB A, CHEEMA Z ATA, et al. Allelo-pathic activity of crop residue incorporation alone or mixed against rice and its associated grass weed jungle rice [Echino-chloa colona (L.) Link][J]. Chilean Journal of Agricultural Research, 2011, 71(3): 418-423. DOI: 10.4067/S0718-58392011000300012
doi: 10.4067/S0718-58392011000300012
20 NEUGSCHWANDTNER R W, KAUL H P. Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops[J]. Field Crops Research, 2014, 155: 159-163. DOI: 10.1016/j.fcr.2013.09.010
doi: 10.1016/j.fcr.2013.09.010
21 ZHU Y Y, CHEN H R, FAN J H, et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797): 718-722.
22 GRETTENBERGER I M, TOOKER J F. Moving beyond resistance management toward an expanded role for seed mixtures in agriculture[J]. Agriculture, Ecosystems & Environ-ment, 2015, 208: 29-36. DOI:10.1016/j.agee.2015.04.019
doi: 10.1016/j.agee.2015.04.019
23 马辉刚,舒畅,刘康成,等.水稻品种多样性持续控制稻瘟病研究[J].中国生态农业学报,2007,15(2):114-117.
MA H G, SHU C, LIU K C, et al. Studies on rice variety diversity for sustainable control of rice blast[J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 114-117. (in Chinese with English abstract)
24 杨世民,谢力,郑顺林,等.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报,2009,35(1):93-103. DOI:10.3724/SP.J.1006.2009.00093
YANG S M, XIE L, ZHENG S L, et al. Effects of nitrogen rate and transplanting density on physical and chemical charac-teristics and lodging resistance of culms in hybrid rice[J]. Acta Agronomica Sinica, 2009, 35(1): 93-103. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00093
25 刘二明,朱有勇,肖放华,等.水稻品种多样性混栽持续控制稻瘟病研究[J].中国农业科学,2003,36(2):164-168. DOI:10.3321/j.issn:0578-1752.2003.02.008
LIU E M, ZHU Y Y, XIAO F H, et al. Using genetic diversity of rice varieties for sustainable control of rice blast disease[J]. Scientia Agricultura Sinica, 2003, 36(2): 164-168. (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2003.02.008
26 BAROT S, ALLARD V, CANTAREL A, et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review[J]. Agronomy for Sustainable Develop-ment, 2017, 37(2): 13. DOI: 10.1007/s13593-017-0418-x
doi: 10.1007/s13593-017-0418-x
27 闫晓君,王丽丽,江瑜,等.长江三角洲主要超级稻CH4排放特征及其与植株生长特性的关系[J].应用生态学报,2013,24(9):2518-2524. DOI:10.13287/j.1001-9332.2013.0499
YAN X J, WANG L L, JIANG Y, et al. CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2518-2524. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2013.0499
28 郝芃钫.不同类型水稻品种棵间温室气体排放及产量研究[D].合肥:安徽农业大学,2016.
HAO P F. Greenhouse gas emissions among individual plants and yield research about different types of rice varieties[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese with English abstract)
29 田婷,张青,沈明星,等.太湖流域低温室气体排放水稻品种筛选的初步研究[J].扬州大学学报(农业与生命科学版),2018,39(2):22-28. DOI:10.16872/j.cnki.1671-4652.2018.02.004
TIAN T, ZHANG Q, SHEN M X, et al. A primary study on selection of rice cultivars with low cropland greenhouse gases emissions in Taihu area[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2018, 39(2): 22-28. (in Chinese with English abstract)
doi: 10.16872/j.cnki.1671-4652.2018.02.004
30 BHATTACHARYYA P, DAS S, ADHYA T K. Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses[J]. Communications in Soil Science and Plant Analysis, 2013, 44(10): 1643-1658. DOI: 10.1080/00103624.2013.769562
doi: 10.1080/00103624.2013.769562
31 SINGH A, KUMAR M, CHAKDAR H, et al. Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion[J]. Frontiers in Microbiology, 2022, 13: 1033158. DOI: 10.3389/fmicb.2022.1033158
doi: 10.3389/fmicb.2022.1033158
32 邓仕文,王浩宇,李荣凯,等.水稻混合种植的抗逆增产研究进展[J].杂交水稻,2023,38(3):20-27. DOI:10.16267/j.cnki.1005-3956.20220801.309
DENG S W, WANG H Y, LI R K, et al. Research progress on stress resistance and yield increase in mixed rice planting[J]. Hybrid Rice, 2023, 38(3): 20-27. (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.20220801.309
33 郭世保.小麦多品种混播对条锈病的控制作用研究[D].杨凌:西北农林科技大学,2012.
GUO S B. Studies on the use of wheat cultivar mixtures for the control of stripe rust[D]. Yangling: Northwest A&F University, 2012. (in Chinese with English abstract)
34 滕飞,陈惠哲,蔡雪青,等.不同水稻品种混合种植研究进展[J].杂交水稻,2014,29(4):1-5. DOI:10.16267/j.cnki.1005-3956.2014.04.003
TENG F, CHEN H Z, CAI X Q, et al. Research progress on rice varietal mixture planting[J]. Hybrid Rice, 2014, 29(4): 1-5. (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.2014.04.003
35 沈君辉,聂勤,黄得润,等.作物混植和间作控制病虫害研究的新进展[J].植物保护学报,2007,34(2):209-216. DOI:10.3321/j.issn:0577-7518.2007.02.018
SHEN J H, NIE Q, HUANG D R, et al. Recent advances in controlling plant diseases and insect pests by mixture planting and inter-planting of crops[J]. Acta Phytophylacica Sinica, 2007, 34(2): 209-216. (in Chinese with English abstract)
doi: 10.3321/j.issn:0577-7518.2007.02.018
36 TANG J, XIE J, CHEN X, et al. Can rice genetic diversity reduce Echinochloa crus-galli infestation?[J]. Weed Research, 2009, 49(1): 47-54. DOI: 10.1111/j.1365-3180.2008.00650.x
doi: 10.1111/j.1365-3180.2008.00650.x
37 WANG B, NEUE H U, SAMONTE H P. Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission[J]. Agriculture, Ecosystems & Environment, 1997, 62(1): 31-40.
38 DAS K, BARUAH K K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2008, 134(2): 303-312. DOI: 10.1111/j.1399-3054.2008.01137.x
doi: 10.1111/j.1399-3054.2008.01137.x
39 SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602-606. DOI: 10.1038/nature14673
doi: 10.1038/nature14673
40 VAN DER GON H A C D, KROPFF M J, VAN BREEMEN N, et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. PNAS, 2002, 99(19): 12021-12024. DOI: 10.1073/pnas.192276599
doi: 10.1073/pnas.192276599
41 杨蕙琳,娄运生,刘燕,等.夜间增温品种混栽对稻田土壤CH4和N2O排放的影响[J].生态学报,2021,41(2):553-564. DOI:10.5846/stxb201909081873
YANG H L, LOU Y S, LIU Y, et al. Effect of rice intercropping on CH4 and N2O emissions in a subtropical paddy field under nighttime warming[J]. Acta Ecologica Sinica, 2021, 41(2): 553-564. (in Chinese with English abstract)
doi: 10.5846/stxb201909081873
42 朱有勇,孙雁,王云月,等.水稻品种多样性遗传分析与稻瘟病控制(英文)[J].遗传学报,2004,31(7):707-716.
ZHU Y Y, SUN Y, WANG Y Y, et al. Genetic analysis of rice varietal diversity for rice blast control[J]. Acta Genetica Sinica, 2004, 31(7): 707-716. (in English)
[1] 唐政,余越,刘羽飞,岑海燕. 田间作物表型获取无人车平台主体结构设计与优化[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 280-292.
[2] 童文彬,曹雪蕊,江建锋,王小子,刘国群,宋建忠,AFSHEEN Zehra,杨肖娥. 超积累东南景天与油料作物轮间作修复农田镉铅污染的技术模式研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 212-222.
[3] 向洁, 王富强, 郭宝光, 王庆刚, 余成群, 沈振西, 邵小明. 西藏河谷区燕麦与箭筈豌豆混间作对产量和营养品质的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 555-564.
[4] 刘晨,郭佳,赵敏,钟斌,郭华,侯淑贞,徐炜杰,杨芸,王任远,叶正钱,柳丹. 毛竹幼苗与伴矿景天间作对铜、镉、锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615-622.
[5] 魏常慧, 刘亚军, 冶秀香, 李越, 马琨. 马铃薯/玉米间作栽培对土壤和作物的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 54-64.
[6] 方萍,刘卫国,刘孝德,刘婷,池晓玉,许燕,庞婷,彭霄,蔡凌,杨文钰. 玉-豆间作对菜用大豆品质的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 556-.
[7] 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 273-281.
[8] 张晓梅,丁艳锋,张巫军,吴晓然,李刚华. 西南稻区水稻产量的时空变化[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 695-702.
[9] 郭燕, 巨青松, 姚洪渭*, 蒋明星, 叶恭银, 程家安. 环境因子变化对褐飞虱非特异性酯酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 591-599.
[10] 马波  娄永根  程家安. 几种生物因子对褐飞虱诱导的水稻挥发物活性的影响[J]. 浙江大学学报(农业与生命科学版), 2004, 30(6): 589-595.
[11] 闵航  谭玉龙  吴伟祥  陈中云  陈美慈. 一个厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 619-624.
[12] 陈美慈  张光亚  邹渊博  闵航. 设施栽培土壤甲烷氧化的研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(5): 501-506.
[13] 陈中云  闵航  吴伟祥  陈美慈. 土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J]. 浙江大学学报(农业与生命科学版), 2001, 27(5): 546-550.
[14] 陈中云 吴伟祥 闵航 陈美慈 赵宇华. 两株能利用甲烷的吸水链霉菌(Streptomyces hygroscopicus)的分离和鉴定[J]. 浙江大学学报(农业与生命科学版), 2000, 26(4): 384-388.