Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (2): 280-292    DOI: 10.3785/j.issn.1008-9209.2022.01.241
农业工程     
田间作物表型获取无人车平台主体结构设计与优化
唐政1,2(),余越1,2,刘羽飞1,2,岑海燕1,2()
1.浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
2.农业农村部光谱检测重点实验室,浙江 杭州 310058
Design and optimization of main structure of unmanned vehicle-based field crop phenotyping platform
Zheng TANG1,2(),Yue YU1,2,Yufei LIU1,2,Haiyan CEN1,2()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
 全文: PDF(7641 KB)   HTML
摘要:

本研究旨在设计和优化一种稳定、轻量化的无人车载田间作物表型获取平台主体结构。为了满足高安全性、高稳定性、轻量化的要求,采用Pro/Engineer Wildfire 5.0软件设计无人车平台主体结构模型,并采用HyperWorks 2020软件进行有限元分析和结构模型优化。同时,在设计过程中对结构进行静力学和动力学分析。以结构整体质量最小化为目标函数,以材料屈服强度和一阶模态为约束条件,采用试验设计法提取多工况下对一阶模态和应力敏感的部件结构参数作为设计变量,大大减少了变量数量。应用自适应响应面法进行迭代计算,优化获取自适应的结构变量。与有限元模型的对应输出响应相比,自适应响应面近似模型在主体结构质量和一阶模态频率的误差分别为3.79%和4.32%,在静止与匀速、启动、停车工况下的最大应力误差分别为4.24%、4.14%和1.26%,表明自适应响应面近似模型具有满足设计要求的精度且误差均低于5%。相比于优化前的主体结构,在保持各工况安全系数在5.0以上的情况下,实现整体质量减少63.61%,得到了安全系数高、稳定性强的田间作物表型获取平台主体结构。

关键词: 田间作物表型获取平台无人车有限元分析结构优化自适应响应面法    
Abstract:

This study aims to design and optimize the main structure of a stable and lightweight unmanned vehicle-based field crop phenotyping platform. In order to meet the requirement of high safety, high stability, and lightweight, Pro/Engineer Wildfire 5.0 software was used to design the main structure model of the platform, and HyperWorks 2020 software was employed to perform the finite element analysis and optimize the structure model. Meanwhile, the statics and dynamics analysis of the structure was implemented during the design process. Taking the main structural mass as the objective function, with the material yield limit and the first-order mode as the constraints, the design of experiment (DOE) method was applied to extract the structural parameters of parts with the high sensitivity to the first-order mode and stress under multi-working conditions as design variables, which greatly reduced the variable number. Then, the adaptive response surface method (ARSM) was applied for iterative calculation to obtain the optimal variables. Compared with the corresponding output response of the actual finite element model, the ARSM approximate model produced a low error of 3.79% and 4.32% in the main structure mass and the first-order modal frequency, respectively, which also obtained the maximum stress error of 4.24%, 4.14%, and 1.26% under the static and uniform speed conditions, starting conditions, and emergency shutdown conditions, respectively. These results show that the ARSM approximate model has a high accuracy and the error is less than 5%. Compared with the original structure, the final overall mass was reduced by 63.61% at maintaining the safety factor of each working condition above 5.0. As a result, the main structure of field crop phenotyping platform is obtained with high safety factor and meeting usage requirements.

Key words: field crop phenotyping platform    unmanned vehicle    finite element analysis    structural optimization    adaptive response surface method
收稿日期: 2022-01-24 出版日期: 2023-04-27
CLC:  S224.9  
基金资助: 浙江省重点研发计划项目(2020C02002)
通讯作者: 岑海燕     E-mail: zhengtang@zju.edu.cn;hycen@zju.edu.cn
作者简介: 唐政(https://orcid.org/0000-0002-5118-7931),E-mail:zhengtang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐政
余越
刘羽飞
岑海燕

引用本文:

唐政,余越,刘羽飞,岑海燕. 田间作物表型获取无人车平台主体结构设计与优化[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 280-292.

Zheng TANG,Yue YU,Yufei LIU,Haiyan CEN. Design and optimization of main structure of unmanned vehicle-based field crop phenotyping platform. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 280-292.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.01.241        https://www.zjujournals.com/agr/CN/Y2023/V49/I2/280

图1  无人车示意图(可负载150 kg)
图2  无人车平台主体结构示意图
图3  无人车平台主体结构简化图L:悬臂长度;F:载荷;y:最大挠度。
图4  无人车平台主体结构前部伸出长度最小化示意图
图5  载荷设置示意图
图6  信息采集平台田间作业路径规划示意图
图7  各工况下无人车平台主体结构静力分析A.静止与匀速工况下变形云图(最大位移0.40 mm);B.静止与匀速工况下应力云图(最大冯·米塞斯应力18.43 MPa);C.停车工况下变形云图(最大位移0.47 mm);D.停车工况下应力云图(最大冯·米塞斯应力15.53 MPa);E.启动工况下变形云图(最大位移0.39 mm);F.启动工况下应力云图(最大冯·米塞斯应力21.22 MPa)。

路面类型

Road surface type

道路不平度波长

Wavelength of road roughness (λ)/m

平坦公路 Flat road1.00~6.30
未铺装路面 Unpaved road0.77~2.50
搓板路 Washboard road0.74~5.60
碎石路 Gravel road0.32~6.30
表1  不同路面类型的道路不平度波长
图8  无人车平台主体结构前10阶模态图
图9  无支撑件的无人车平台主体结构第一阶模态图
图10  各响应主效应曲线A.主体结构质量主效应曲线;B.静止与匀速工况下主体结构应力主效应曲线;C.停车工况下主体结构应力主效应曲线;D.启动工况下主体结构应力主效应曲线;E.主体结构一阶模态主效应曲线。

主效应

Main effect

各组变量灵敏度排序(降序)

Descending order of sensitivity of each group variables

12345678910
质量 MassP12P11P2P15P16P10P25P4P5P19

静止与匀速工况下冯·米塞斯应力

Von Mises stress under static and uniform speed conditions

P12P16P26P23P19P27P13P17P11P7

停车工况下冯·米塞斯应力

Von Mises stress under emergency shutdown conditions

P12P19P23P13P17P11P26P27P16P25

启动工况下冯·米塞斯应力

Von Mises stress under starting conditions

P12P16P26P27P17P13P19P23P7P28
一阶模态 The first-order modeP5P16P28P27P30P29P1P10P18P17
表2  不同主效应下各组变量灵敏度排序(前10)
图11  最终设计变量分组图
图12  自适应响应面法流程图
图13  主体结构质量的优化迭代过程自适应响应面方法的目标函数迭代曲线。

部件序号

Part number

初始值

Initial value

最优解

Optimal solution

其余部件 Rest of the parts3.01.0
P123.01.0
P163.02.5
P193.01.5
P53.01.0
P263.01.0
P233.01.0
P283.01.0
P273.01.0
P133.01.0
P173.01.5
表3  各部件厚度变化 (mm)
图14  优化后无人车平台主体结构厚度分布示意图

响应

Response

近似值

Approximate value

准确值

Exact value

相对误差

Relative error/%

主体结构质量 Main structure mass/t0.035 50.036 93.79
一阶模态频率 The first-order modal frequency/Hz16.603 917.353 74.32

静止与匀速工况下最大应力

Maximum stress under static and uniform speed conditions/MPa

37.439 839.096 24.24

启动工况下最大应力

Maximum stress under starting conditions/MPa

37.862 139.498 24.14

停车工况下最大应力

Maximum stress under emergency shutdown conditions/MPa

37.599 438.078 91.26
表4  有限元模型与自适应响应面近似模型计算值比较
阶次Order

频率

Frequency/Hz

振型

Vibration mode

1st17.353 7结构头部左右弯曲振动 Left and right bending vibration in the head of structure
2nd23.820 1结构头部上下弯曲振动 Up and down bending vibration in the head of structure
3rd24.401 4结构尾部上方左右弯曲振动 Left and right bending vibration above the tail of structure
4th29.832 6结构头部上下弯曲振动 Up and down bending vibration in the head of structure
5th56.506 5

结构头部与尾部上方左右扭转振动,其中头部右侧较低

Left and right torsion vibration above the head and tail of structure, and the right side of the head is low

6th65.597 6

结构头部与尾部上方左右扭转振动,其中头部左侧较低

Left and right torsion vibration above the head and tail of structure, and the left side of the head is low

7th74.764 0结构中部上方上下弯曲振动 Up and down bending vibration above the middle of structure
8th117.919 5结构尾部上方上下弯曲振动 Up and down bending vibration above the tail of structure
9th118.930 9

结构头部左右弯曲振动,结构中部上下弯曲振动

Left and right bending vibration in the head of structure, up and down bending vibration in the middle of structure

10th126.740 5

结构中部两侧上方局部张力振动

Local tension vibration above two sides in the middle of structure

表5  优化后无人车平台主体结构模态分析结果
图15  信息采集平台田间工作图
1 张佳菲,万亮,何勇,等.基于快速叶绿素荧光技术的油菜冠层生化参数垂直异质性分析[J].智慧农业(中英文),2021,3(1):40-50. DOI:10.12133/j.smartag.2021.3.1.202103-SA005
ZHANG J F, WAN L, HE Y, et al. Vertical heterogeneity analysis of biochemical parameters in oilseed rape canopy based on fast chlorophyll fluorescence technology[J]. Smart Agriculture, 2021, 3(1): 40-50. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2021.3.1.202103-SA005
2 WAN L, CEN H Y, ZHU J P, et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer: a case study of small farmlands in the South of China[J]. Agricultural and Forest Meteorology, 2020, 291: 108096. DOI: 10.1016/j.agrformet.2020.108096
doi: 10.1016/j.agrformet.2020.108096
3 WAN L, ZHANG J F, DONG X Y, et al. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model[J]. Computers and Electronics in Agriculture, 2021, 187: 106304. DOI: 10.1016/j.compag.2021.106304
doi: 10.1016/j.compag.2021.106304
4 YOUNG S N, KAYACAN E, PESCHEL J M. Design and field evaluation of a ground robot for high-throughput pheno-typing of energy sorghum[J]. Precision Agriculture, 2019, 20(4): 697-722. DOI: 10.1007/s11119-018-9601-6
doi: 10.1007/s11119-018-9601-6
5 WANG X, SINGH D, MARLA S, et al. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies[J]. Plant Methods, 2018, 14: 53. DOI: 10.1186/s13007-018-0324-5
doi: 10.1186/s13007-018-0324-5
6 BUSEMEYER L, MENTRUP D, MÖLLER K, et al. Breed-Vision: a multi-sensor platform for non-destructive field-based phenotyping in plant breeding[J]. Sensors, 2013, 13(3): 2830-2847. DOI: 10.3390/s130302830
doi: 10.3390/s130302830
7 WHITE J W, ANDRADE-SANCHEZ P, GORE M A, et al. Field-based phenomics for plant genetics research[J]. Field Crops Research, 2012, 133: 101-112. DOI: 10.1016/j.fcr.2012.04.003
doi: 10.1016/j.fcr.2012.04.003
8 KHALILIAN A, ROGERS N G, WILLIAMS P B, et al. Sensor-based algorithm for mid-season nitrogen application in corn[J]. Open Journal of Soil Science, 2017, 7: 278-287. DOI: 10.4236/ojss.2017.710020
doi: 10.4236/ojss.2017.710020
9 COMAR A, BURGER P, DE SOLAN B, et al. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results[J]. Functional Plant Biology, 2012, 39(11): 914-924. DOI: 10.1071/FP12065
doi: 10.1071/FP12065
10 TANGER P, KLASSEN S, MOJICA J P, et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice[J]. Scientific Reports, 2017, 7: 42839. DOI: 10.1038/srep42839
doi: 10.1038/srep42839
11 SVENSGAARD J, ROITSCH T, CHRISTENSEN S. Develop-ment of a mobile multispectral imaging platform for precise field phenotyping[J]. Agronomy, 2014, 4: 322-336. DOI: 10.3390/agronomy4030322
doi: 10.3390/agronomy4030322
12 丁肇,李耀明,唐忠.轮式和履带式车辆行走对农田土壤的压实作用分析[J].农业工程学报,2020,36(5):10-18. DOI:10.11975/j.issn.1002-6819.2020.05.002
DING Z, LI Y M, TANG Z. Compaction effects of wheeled vehicles and tracked on farmland soil[J]. Transactions of the CSAE, 2020, 36(5): 10-18. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.05.002
13 SHI Y, WANG N, TAYLOR R K, et al. Improvement of a ground-LiDAR-based corn plant population and spacing measurement system[J]. Computers and Electronics in Agricul-ture, 2015, 112: 92-101. DOI: 10.1016/j.compag.2014.11.026
doi: 10.1016/j.compag.2014.11.026
14 MUELLER-SIM T, JENKINS M, ABEL J, et al. The robotanist: a ground-based agricultural robot for high-throughput crop phenotyping[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore City, the Republic of Singapore: IEEE, 2017: 3634-3639. DOI: 10.1109/ICRA.2017.7989418
doi: 10.1109/ICRA.2017.7989418
15 QIU Q, SUN N, BAI H, et al. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “Phenomobile”[J]. Frontiers in Plant Science, 2019, 10: 554. DOI: 10.3389/fpls.2019.00554
doi: 10.3389/fpls.2019.00554
16 DEERY D, JIMENEZ-BERNI J, JONES H, et al. Proximal remote sensing buggies and potential applications for field-based phenotyping[J]. Agronomy, 2014, 5: 349-379. DOI: 10.3390/agronomy4030349
doi: 10.3390/agronomy4030349
17 UNDERWOOD J, WENDEL A, SCHOFIELD B, et al. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle[J]. Journal of Field Robotics, 2017, 34(6): 1061-1083. DOI: 10.1002/rob.21728
doi: 10.1002/rob.21728
18 KICHERER A, HERZOG K, PFLANZ M, et al. An automated field phenotyping pipeline for application in grapevine research[J]. Sensors, 2015, 15(3): 4823-4836. DOI: 10.3390/s150304823
doi: 10.3390/s150304823
19 许延坡.薄板动力分析及拓扑优化的GPU加速研究[D].湖南,湘潭:湘潭大学,2019. DOI:10.7498/aps.68.20191276
XU Y P. Research on GPU acceleration for sheet dynamic analysis and topology optimization[D]. Xiangtan, Hunan: Xiangtan University, 2019. (in Chinese with English abstract)
doi: 10.7498/aps.68.20191276
20 兰凤崇,钟阳,庄良飘,等.基于自适应响应面法的车身前部吸能部件优化[J].汽车工程,2010,32(5):404-408. DOI:10.19562/j.chinasae.qcgc.2010.05.008
LAN F C, ZHONG Y, ZHUANG L P, et al. Optimization of energy absorbing members in front end of car body based on adaptive response surface method[J]. Automotive Engineering, 2010, 32(5): 404-408. (in Chinese with English abstract)
doi: 10.19562/j.chinasae.qcgc.2010.05.008
21 KESHTEGAR B, HAO P, WANG Y T, et al. An adaptive response surface method and Gaussian global-best harmony search algorithm for optimization of aircraft stiffened panels[J]. Applied Soft Computing, 2018, 66: 196-207. DOI: 10.1016/j.asoc.2018.02.020
doi: 10.1016/j.asoc.2018.02.020
22 许佩霞,蔡炳芳.基于ANSYS的全地形车车架结构优化设计[J].机械设计,2008,25(12):56-58. DOI:10.13841/j.cnki.jxsj.2008.12.016
XU P X, CAI B F. Structural optimization design on frame of all topography vehicle based on ANSYS[J]. Journal of Machine Design, 2008, 25(12): 56-58. (in Chinese with English abstract)
doi: 10.13841/j.cnki.jxsj.2008.12.016
23 韩红阳,陈树人,邵景世,等.机动式喷杆喷雾机机架的轻量化设计[J].农业工程学报,2013,29(3):47-53, 293. DOI:10.3969/j.issn.1002-6819.2013.03.007
HAN H Y, CHEN S R, SHAO J S, et al. Lightweight design of chassis frame for motor boom sprayer[J]. Transactions of the CSAE, 2013, 29(3): 47-53, 293. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2013.03.007
24 戴江梁,吴长德,谢小平,等.点焊连接的有限元建模方法研究及案例应用[J].现代制造工程,2014(9):74-80. DOI:10.16731/j.cnki.1671-3133.2014.09.003
DAI J L, WU C D, XIE X P, et al. Study and application on finite element modeling of spot welding connection[J]. Modern Manufacturing Engineering, 2014(9): 74-80. (in Chinese with English abstract)
doi: 10.16731/j.cnki.1671-3133.2014.09.003
25 刘磊,马爱军,刘洪英,等.基于HyperMesh的某航天产品结构螺栓连接处理方法研究[J].航天医学与医学工程,2015,28(6):441-444. DOI:10.16289/j.cnki.1002-0837.2015.06.010
LIU L, MA A J, LIU H Y, et al. Study on bolt connection processing methods of a space product structure based on HyperMesh software[J]. Space Medicine & Medical Engi-neering, 2015, 28(6): 441-444. (in Chinese with English abstract)
doi: 10.16289/j.cnki.1002-0837.2015.06.010
26 曾铁.地球重力加速度公式、数据及图示[J].职大学报,2013(2):85-87, 89. DOI:10.3969/j.issn.1671-1440.2013.02.022
ZENG T. The earth’s gravity acceleration formula, data and graphic[J]. Journal of the Staff and Worker’s University, 2013(2): 85-87, 89. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-1440.2013.02.022
27 张文昌.三轮摩托车平顺性研究与振动测试平台开发[D].湖北,武汉:武汉理工大学,2012. DOI:10.7666/d.y2099698
ZHANG W C. The research on ride comfort of three-wheeled motorcycle and the development of vibration test platform[D]. Wuhan, Hubei: Wuhan University of Technology, 2012. (in Chinese with English abstract)
doi: 10.7666/d.y2099698
[1] 霍鹏,李建平,杨欣,许述财,范晓文. 振摆式起苗清土一体机结构设计与田间试验[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 618-624.
[2] 徐奕蒙, 朱晓文, 刘志杰, 胡耀华, 谷芳. 基于计算流体动力学的风送式喷雾机风送系统流场模拟及结构优化[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 451-458.
[3] 王博, 王俊, 杜冬冬. 基于HyperMesh 和LS-DYNA 的玉米籽粒碰撞损伤动态过程的有限元分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 465-475.
[4] 王永维,何焯亮,陈军,王俊,张羚玥,唐燕海. 碰撞气吹式杂交水稻授粉机结构与参数优化[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 98-106.
[5] 宋慧芝  王俊  叶均安 . 鸡蛋蛋壳受载特性的有限元研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 350-354.