Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 197-206    DOI: 10.3785/j.issn.1008-973X.2024.01.021
机械工程、电气工程     
微细金属Z-pin对复合材料开孔板压缩性能的影响
宋小文1,2(),杜嘉成3,费少华1,2,丁会明1,2,4,*(),王金良3,高宇1,2
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学 浙江省先进制造技术重点实验室,浙江 杭州 310027
3. 浙江大学 工程师学院,浙江 杭州 310015
4. 东海实验室,浙江 舟山 316021
Effect of fine metallic Z-pin on compressive property of open-hole composite laminate
Xiaowen SONG1,2(),Jiacheng DU3,Shaohua FEI1,2,Huiming DING1,2,4,*(),Jinliang WANG3,Yu GAO1,2
1. State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
3. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
4. Donghai Laboratory, Zhoushan 316021, China
 全文: PDF(3090 KB)   HTML
摘要:

通过开孔板压缩试验和建立的参数化多尺度有限元模型,获得微细(?0.11 mm)金属Z-pin植入体积分数和排布方式对开孔板压缩力学性能和失效行为的影响规律. 采用离散实体单元代表Z-pin,选用3D Hashin失效准则判断面内起始损伤,可以有效地模拟结构失效过程中扭结现象的不稳定扩展. 结果表明,所有加Z-pin开孔板的压缩强度均低于无Z-pin试样. 随着Z-pin植入体积分数的增加,Z-pin与层合板之间的桥联作用增强,加Z-pin开孔层合板压缩强度增加,开孔周围分层损伤区域受到抑制,损伤区域面积最高减小了67%. 在相同的体积分数下,Z-pin排布变化对开孔板压缩强度没有显著影响. 加Z-pin开孔板有限元模型的模拟结果与试验结果之间的最大相对误差为8.6%.

关键词: Z-pin复合材料参数化建模渐进损伤开孔层合板    
Abstract:

The influence of fine (?0.11 mm) metallic Z-pin volume fraction and arrangement on the mechanical performance and failure behavior of the open-hole laminates compression was analyzed through open-hole compression test and parametric multi-scale finite element model. Discrete solid element was employed to represent Z-pins, and the 3D Hashin failure criterion was utilized to assess the initial in-plane damage. Then the unstable propagation of kink band was effectively simulated during structural failure. Results showed that the compressive strength of all Z-pinned open-hole laminates was lower than that of specimens without Z-pins. The bridging effect between Z-pins and laminates was enhanced with an increase in Z-pin volume fraction, resulting in increased compressive strength of Z-pinned open-hole laminates. The delaminated area around the hole was suppressed, leading to a maximum reduction of 67% in the damaged area. The variation of Z-pin arrangement did not significantly affect the compression strength of open-hole laminates under the same volume fraction. The maximum relative error between the finite element model simulated results of Z-pinned open-hole laminates and experimental results was 8.6%.

Key words: Z-pin    composite    parameterized modelling    progressive damage    open-hole laminate
收稿日期: 2023-03-13 出版日期: 2023-11-07
CLC:  V 258  
基金资助: 浙江省重点研发计划资助项目(2020C01039)
通讯作者: 丁会明     E-mail: songxw@zju.edu.cn;pangding@zju.edu.cn
作者简介: 宋小文(1967—),女,教授,从事复合材料结构设计制造技术的研究. orcid.org/0000-0001-6386-9836. E-mail: songxw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋小文
杜嘉成
费少华
丁会明
王金良
高宇

引用本文:

宋小文,杜嘉成,费少华,丁会明,王金良,高宇. 微细金属Z-pin对复合材料开孔板压缩性能的影响[J]. 浙江大学学报(工学版), 2024, 58(1): 197-206.

Xiaowen SONG,Jiacheng DU,Shaohua FEI,Huiming DING,Jinliang WANG,Yu GAO. Effect of fine metallic Z-pin on compressive property of open-hole composite laminate. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 197-206.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.021        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/197

图 1  开孔压缩试样整体尺寸的示意图
图 2  Z-pin植入点阵的示意图
图 3  超声引导植入设备
图 4  真空固化袋
图 5  开孔压缩试验环境
图 6  开孔压缩试验与仿真载荷位移曲线
试验编号 $ \varphi $/% $ {\sigma _{\text{c}}} $/MPa $ {\text{CV}} $/%
A 0.00 335.25 3.63
B 0.15 319.65 (?4.65%) 4.62
C 0.11 317.86 (?5.19%) 4.63
D 0.04 307.26 (?8.35%) 2.49
E 0.11 317.76 (?5.22%) 3.50
表 1  开孔压缩试验结果
图 7  富树脂区的示意图[19]
图 8  开孔压缩试样的扭结带扩展过程
图 9  试样厚度方向的失效形貌
图 10  有限元模型的配置
图 11  不同失效准则的开孔压缩有限元模型计算结果
图 12  面内失效双线性退化模型[28]
参数 参数值 参数 参数值
${{{E}}_{\text{1}}}{\text{/GPa}}$ 90 ${X_{\text{T}}}/{\text{MPa}}$ 1700
${{{E}}_{\text{2}}}{\text{/GPa}}$ 7.1 ${X_{\text{C}}}/{\text{MPa}}$ 900
${{{E}}_{\text{3}}}{\text{/GPa}}$ 7.1 ${Y_{\text{T}}}/{\text{MPa}}$ 55
${\nu _{{\text{12}}}}$ 0.34 ${Y_{\text{C}}}/{\text{MPa}}$ 100
${\nu _{{\text{13}}}}$ 0.34 ${Z_{\text{T}}}/{\text{MPa}}$ 55
${\nu _{{\text{23}}}}$ 0.4 ${Z_{\text{C}}}/{\text{MPa}}$ 100
${G_{{\text{12}}}}{\text{/MPa}}$ 2700 ${S_{ {\text{12} } } }{\text{/MPa} }$ 100
${G_{{\text{13}}}}{\text{/MPa}}$ 2700 ${S_{ {\text{13} } } }{\text{/MPa} }$ 100
${G_{{\text{23}}}}{\text{/MPa}}$ 2500 ${S_{ {\text{23} } } }{\text{/MPa} }$ 55
表 2  有限元模型的单层板材料性能参数[29–31]
参数 参数值
Cohesive单元 Z-pin Cohesive接触
${K_{ {\text{nn} } } }/({\text{N} }\cdot{\text{mm} }^{-3} )$ 5×104 2188.8
$ {K_{{\text{ss}}}},{K_{{\text{tt}}}}/({\text{N}}\cdot{\text{mm}}^{-3}) $ 5×104 10944.1
$ \sigma _{\text{n}}^0/{\text{MPa}} $ 30 273.6
$ \sigma _{\text{s}}^0,\sigma _{\text{t}}^0/{\text{MPa}} $ 70 789.2
$ G_{\rm{n}}^{\rm{C}}/({\text{kJ}}\cdot{{\text{m}}^{{-2}}}) $ 0.6 1103.5
$ G_{\rm{s}}^{\rm{C}},G_{\rm{t}}^{\rm{C}}/({\text{kJ}}\cdot {{\text{m}}^{{-2}}}) $ 1.2 1325.5
表 3  Cohesive界面属性[19,34]
图 13  Z-pin开孔层合板建模算法的流程图
试验组别 $ {\sigma _{\text{c}}} $/MPa $ \sigma _{\text{c}}^{{\text{sim}}} $/MPa $ \delta $/%
A 335.25 340.83 1.67
B 319.65 347.17 8.61
C 317.86 332.17 4.50
D 307.26 317.00 3.17
E 317.76 330.25 3.93
表 4  开孔板的试验与仿真压缩强度
图 14  开孔压缩的渐进失效行为
图 15  分层损伤扩展状态
图 16  Z-pin接触行为的有限元分析结果
1 FALCÓ O, ÁVILA R L, TIJS B, et al Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework[J]. Composite Structures, 2018, 190: 137- 159
doi: 10.1016/j.compstruct.2018.02.016
2 WU Y, CHENG X, CHEN S, et al In situ formation of a carbon nanotube buckypaper for improving the interlaminar properties of carbon fiber composites[J]. Materials and Design, 2021, 202: 109535
doi: 10.1016/j.matdes.2021.109535
3 VAN DER SYPT P, CHÉRIF M, BOIS C Analysis of the fatigue behaviour of laminated composite holes subjected to pin-bearing loads[J]. International Journal of Fatigue, 2017, 103: 86- 98
doi: 10.1016/j.ijfatigue.2017.05.025
4 孙一凡. Z-pin增强复合材料开孔层合板抗压和抗冲击性能研究[D]. 南京: 南京航空航天大学, 2019.
SUN Yifan. Research on compression and impact resistance of open-hole composite laminates reinforced by Z-pin [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
5 SALEEM M, TOUBAL L, ZITOUNE R, et al Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes[J]. Composites Part A: Applied Science and Manufacturing, 2013, 55: 169- 177
doi: 10.1016/j.compositesa.2013.09.002
6 陈燕, 葛恩德, 傅玉灿, 等 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32 (2): 301- 316
CHEN Yan, GE En-de, FU Yu-can, et al Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32 (2): 301- 316
7 WANG Z, ZHOU S, ZHANG J, et al Progressive failure analysis of bolted single-lap composite joint based on extended finite element method[J]. Materials and Design, 2012, 37: 582- 588
doi: 10.1016/j.matdes.2011.08.039
8 ZHOU S, SUN Y, MUHAMMAD R, et al Progressive damage simulation of scaling effects on open-hole composite laminates under compression[J]. Journal of Reinforced Plastics and Composites, 2017, 36 (18): 1369- 1383
doi: 10.1177/0731684417708614
9 HIGUCHI R, WARABI S, YOSHIMURA A, et al Experimental and numerical study on progressive damage and failure in composite laminates during open-hole compression tests[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106300
doi: 10.1016/j.compositesa.2021.106300
10 TALREJA R, SINGH C V. Damage and failure of composite materials [M]. Cambridge: Cambridge University Press, 2012.
11 ZHENG Y, CHENG X, YASIR B Effect of stitching on plain and open-hole strength of CFRP laminates[J]. Chinese Journal of Aeronautics, 2012, 25 (3): 473- 484
doi: 10.1016/S1000-9361(11)60411-1
12 HUANG J, BOISSE P, HAMILA N Simulation of the forming of tufted multilayer composite preforms[J]. Composites Part B: Engineering, 2021, 220: 108981
doi: 10.1016/j.compositesb.2021.108981
13 MOURITZ A P Review of z-pinned laminates and sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106128
doi: 10.1016/j.compositesa.2020.106128
14 CHENG J, XU Y, ZHANG W, et al A review on the multi-scale simulation of Z-pinned composite laminates[J]. Composite Structures, 2022, 295: 115834
doi: 10.1016/j.compstruct.2022.115834
15 FISHPOOL D T, REZAI A, BAKER D, et al Interlaminar toughness characterisation of 3D woven carbon fibre composites[J]. Plastics, Rubber and Composites, 2013, 42 (3): 108- 114
doi: 10.1179/1743289812Y.0000000036
16 STEGSCHUSTER G, PINGKARAWAT K, WENDLAND B, et al Experimental determination of the mode I delamination fracture and fatigue properties of thin 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 308- 315
doi: 10.1016/j.compositesa.2016.02.008
17 MOURITZ A P, JAIN L K Further validation of the Jain and Mai models for interlaminar fracture of stitched composites[J]. Composites Science and Technology, 1999, 59 (11): 1653- 1662
doi: 10.1016/S0266-3538(99)00027-5
18 李梦佳. Z-pin增强复合材料的力学性能研究[D]. 南京: 南京航空航天大学, 2019.
LI Mengjia. Research on the mechanical properties of Z-pinned composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
19 FEI S, WANG W, DING H, et al Strengthening of composite T-joints using Ø 0.11 mm Z-pins via an ultrasound-guided insertion process[J]. Composites Part C: Open Access, 2022, 8: 100268
doi: 10.1016/j.jcomc.2022.100268
20 LI M, CHE Z, WANG S, et al Tuning interlaminar fracture toughness of fine z-pin reinforced polymer composite[J]. Materials and Design, 2021, 212: 110293
21 FEI S, WANG W, WANG H, et al Effect of Ø0.11 mm Z-pinning on the properties of composite laminates via an ultrasound guided insertion process[J]. Composites Science and Technology, 2021, 213: 108906
doi: 10.1016/j.compscitech.2021.108906
22 孙一凡, 李勇, 还大军, 等 Z-pin增强复合材料开孔层合板压缩性能[J]. 航空动力学报, 2019, (4): 885- 893
SUN Yifan, LI Yong, HUAN Dajun, et al Compression performance of open-hole composite laminates reinforced by Z-pin[J]. Journal of Aerospace Power, 2019, (4): 885- 893
23 MOURITZ A P Review of z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (12): 2383- 2397
doi: 10.1016/j.compositesa.2007.08.016
24 GAO Y, FEI S, SONG X, et al Enhancement of composite open-hole tensile strength via fine Z-pins arrangements[J]. International Journal of Mechanical Sciences, 2022, 236: 107752
doi: 10.1016/j.ijmecsci.2022.107752
25 D30 Committee. Test method for open-hole compressive strength of polymer matrix composite laminates [S]. West Conshohocken: ASTM, 2014.
26 HASHIN Z Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47 (2): 329- 334
doi: 10.1115/1.3153664
27 HU H, WEI Q, LIU B, et al Progressive damage behaviour analysis and comparison with 2D/3D Hashin failure models on carbon fibre–reinforced aluminium laminates[J]. Polymers, 2022, 14 (14): 2946
doi: 10.3390/polym14142946
28 LIU P F, LIAO B B, JIA L Y, et al Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149: 408- 422
doi: 10.1016/j.compstruct.2016.04.012
29 XU Y, GAO Y, WU C, et al On design of carbon fiber reinforced plastic (CFRP) laminated structure with different failure criteria[J]. International Journal of Mechanical Sciences, 2021, 196: 106251
doi: 10.1016/j.ijmecsci.2020.106251
30 蔡立成. 铺放参数及Z-pin植入对复合材料层合板厚度方向力学行为的影响研究[D]. 杭州: 浙江大学, 2021.
CAI Licheng. Effect of laying parameters and Z-pin insertion on mechanical behavior of composite laminates in thickness direction [D]. Hangzhou: Zhejiang University, 2021.
31 朱春润. 椭圆头无耳托板自锁螺母拉铆成形机理及其CFRP螺栓连接接头性能研究[D]. 杭州: 浙江大学, 2022.
ZHU Chunrun. Research on the forming mechanism of oval-head no-lug self-locking nut and its connection performance of CFRP bolted joint [D]. Hangzhou: Zhejiang University, 2022.
32 BENZEGGAGH M L, KENANE M Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56 (4): 439- 449
doi: 10.1016/0266-3538(96)00005-X
33 HUANG T, HUANG Y, LIN Y, et al Experimental and numerical simulation studies of failure behaviour of carbon fibre reinforced aluminum laminates under transverse local quasi-static loading[J]. Journal of Physics: Conference Series, 2020, 1624 (2): 022042
doi: 10.1088/1742-6596/1624/2/022042
[1] 田壮,肖官衍,金伟良,夏晋,程新. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401.
[2] 费少华,丁会明,汪海晋,李江雄. 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报(工学版), 2023, 57(4): 657-665.
[3] 季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.
[4] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[5] 刘桦珍,周昊. ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能[J]. 浙江大学学报(工学版), 2022, 56(3): 476-484.
[6] 张红哲,张旭,朱晓春,鲍永杰. 基于单颗磨粒划切试验的SiCp/Al复合材料表面去除机理研究[J]. 浙江大学学报(工学版), 2022, 56(2): 388-397.
[7] 洪林,栾丛丛,姚鑫骅,董宁国,纪毓杨,牛成成,丁泽泉,宋学宇,傅建中. 碳纤维复合材料原位增材制造设备与工艺[J]. 浙江大学学报(工学版), 2022, 56(11): 2119-2126.
[8] 李庆华,暴宁,王国仲. UHTCC与钢材界面的剪切型断裂试验研究[J]. 浙江大学学报(工学版), 2022, 56(1): 84-91.
[9] 姜孝男,徐刚,陈卫祥. Z-CoS2-MoS2/rGO的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2022, 56(1): 152-160.
[10] 严守靖,王洋洋,迟凤霞,罗雪. 空心玻璃微珠/纳米TiO2复合材料的制备与表征[J]. 浙江大学学报(工学版), 2021, 55(4): 713-719.
[11] 杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.
[12] 冯炳,陈勇,崔旭,沈国辉,徐海巍. 考虑剪切变形的轴心受压GFRP圆管临界荷载[J]. 浙江大学学报(工学版), 2021, 55(10): 1894-1902.
[13] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[14] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[15] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.