| Robotic and Mechanism Design |
|
|
|
|
| Kinematic characteristics and dynamics analysis of 3-P(2-SS) robot with coplanar parallel driving pairs |
Jin LI( ) |
| Department of Mechanical Engineering, Shanxi Institute of Technology, Yangquan 045000 |
|
|
|
Abstract The 3-P(2-SS) parallel robot driven by three parallel and coplanar prismatic pairs is more suitable for operation in narrow and long areas compared to the traditional configurations. For this robot, its kinematic equations and Jacobian matrix were established, and the multi-solution nature of the kinematic equations was analyzed. By using the kinematic equations and the screw theory, it was confirmed that under normal working conditions, the robot's moving platform always had only three translational degrees of freedom, thereby simplifying the robot's kinematic equations and Jacobian matrix. The dexterity of the robot was analyzed using the condition number of the Jacobian matrix. The robot exhibited better dexterity when the sliders on both sides were located on the same side of the moving platform; the robot's dexterity deteriorated when it was near the singular points and the boundaries of the motion range. A robot dynamic model was established based on the Lagrange equation. The issue of dynamic uncertainty caused by the local degrees of freedom of the link was resolved using the minimum angular velocity assumption, the problem of the non-constant inertia tensor of the ink relative to the static coordinate system was addressed through transformation of the moving coordinate system, and the robot dynamic equation was obtained. By comparing the results of the dynamics calculation and motion simulation, the correctness of the dynamic equation was confirmed, with the error in the driving force calculation results caused by the minimum angular velocity assumption being within an acceptable range. The research results indicate that the 3-P(2-SS) parallel robot with coplanar parallel driving pairs has excellent operability, and the proposed dynamics modeling method provides a theoretical foundation for the construction of control systems for this type of robot.
|
|
Received: 20 March 2025
Published: 31 October 2025
|
|
|
驱动副共面平行的3-P(2-SS)型并联机器人运动特性及动力学分析
由3个平行且共面的移动副驱动的3-P(2-SS)型并联机器人相对传统构型更适合在狭长区域作业。针对该机器人,构建了其运动学方程和雅可比矩阵,并分析了其运动学方程的多解性。利用其运动学方程和螺旋理论,证实了在正常工况下机器人动平台始终只有3个平移自由度,并简化了机器人的运动学方程和雅可比矩阵。利用雅可比矩阵条件数分析了机器人的灵巧性,当2侧的滑块位于动平台同侧时,机器人的灵巧性较好;机器人在奇异点和运动范围边界附近时灵巧性较差。基于拉格朗日方程构建了机器人动力学模型,利用最小角速度假设解决了连杆的局部自由度带来的动力学不确定问题,通过动坐标系变换解决了连杆惯性张量相对静坐标系的不恒定问题,得到了机器人动力学方程。通过动力学计算结果与运动仿真结果的对比,证实了动力学方程的正确性,最小角速度假设导致的驱动力计算结果误差在可控范围内。研究结果表明,驱动副共面平行的3-P(2-SS)并联机器人具有良好的操作性,提出的动力学建模方法为该型机器人力控制系统的构建提供了理论基础。
关键词:
3-P(2-SS),
并联机器人,
自由度,
灵巧性,
动力学
|
|
| [[1]] |
田波, 娄军强, 沈家旭, 等. 可用于微创手术的毫米级微小并联机器人的设计、制造及实现[J]. 机械工程学报, 2024, 60(17): 147-155. TIAN B, LOU J Q, SHEN J X, et al. Design, fabrication and realization of a parallel microrobot at the millimeter scale for minimally invasive surgery[J]. Journal of Mechanical Engineering, 2024, 60(17): 147-155.
|
|
|
| [[2]] |
李清, 刘荣帅, 丰玉玺, 等. 新型并联机器人的构型设计与运动学分析[J]. 包装工程, 2020, 41(9): 167-173. LI Q, LIU R S, FENG Y X, et al. Configuration design and kinematics analysis of a new parallel robot[J]. Packaging Engineering, 2020, 41(9): 167-173.
|
|
|
| [[3]] |
吕志忠, 张成维, 钟功祥, 等. 一种四足磁吸附爬壁机器人运动学分析及仿真[J]. 工程科学与技术, 2020, 52(2): 121-129. LYU Z Z, ZHANG C W, ZHONG G X, et al. Kinematics analysis and simulation of a quadruped magnetic adsorption wall-climbing robot[J]. Advanced Engineering Sciences, 2020, 52(2): 121-129.
|
|
|
| [[4]] |
梁栋, 梁正宇, 畅博彦, 等. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40. LIANG D, LIANG Z Y, CHANG B Y, et al. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
|
|
|
| [[5]] |
刘荣帅, 李清, 杜昱东, 等. 3-CUR并联分拣机器人的运动学分析与仿真[J]. 包装工程, 2019, 40(21): 179-186. LIU R S, LI Q, DU Y D, et al. Kinematics analysis and simulation of 3-CUR parallel sorting robot[J]. Packaging Engineering, 2019, 40(21): 179-186.
|
|
|
| [[6]] |
王学军, 张帆. 攀爬机器人动力学建模与分析[J]. 机械科学与技术, 2023, 42(1): 38-45. WANG X J, ZHANG F. Dynamic modeling and analysis of climbing robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 38-45.
|
|
|
| [[7]] |
王耀军, 金翔. 基于运动/力传递性能的索并联机器人尺度综合研究[J]. 机电工程, 2024, 41(11): 2029-2040, 2118. WANG Y J, JIN X. Dimensional synthesis of cable-driven parallel robots based on the motion/force transmission performance[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(11): 2029-2040, 2118.
|
|
|
| [[8]] |
潘英, 方跃法, 汪丛哲. 五自由度3D打印并联机器人设计及分析[J]. 中国机械工程, 2016, 27(17): 2273-2279. PAN Y, FANG Y F, WANG C Z. Design and analysis of five DOF 3D printing parallel robot[J]. China Mechanical Engineering, 2016, 27(17): 2273-2279.
|
|
|
| [[9]] |
ZHANG L, LI R Q, NING F P, et al. Performance analysis and optimization design of a dual-mode reconfigurable ankle joint parallel rehabilitation mechanism[J]. Applied Sciences, 2024, 14(5): 1757.
|
|
|
| [[10]] |
HAN M, CHE J J, LIU J Y, et al. Performance evaluation and dimensional optimization design of planar 6R redundant actuation parallel mechanism[J]. Robotica, 2024, 42(5): 1649-1675.
|
|
|
| [[11]] |
HUSSAIN S, JAMWAL P K, VAN VLIET P. Design synthesis and optimization of a 4-SPS intrinsically compliant parallel wrist rehabilitation robotic orthosis[J]. Journal of Computational Design and Engineering, 2021, 8(6): 1562-1575.
|
|
|
| [[12]] |
ZOFFOLI F, IDA’ E, CARRICATO M. Design and control optimization for hybrid-controlled overconstrained cable-driven parallel robots[J]. Mechanism and Machine Theory, 2025, 209: 105998.
|
|
|
| [[13]] |
SHAH M F, JAMWAL P K, GOECKE R, et al. A parallel mechanism-based virtual biomechanical shoulder robot model: Mechanism design optimization and motion planning[J]. Mechanics Based Design of Structures and Machines, 2025, 53(4): 2744-2764.
|
|
|
| [[14]] |
梁栋, 李世友, 畅博彦, 等. 冗余驱动精密定位并联机器人动力学优化[J]. 机械设计与研究, 2022, 38(5): 79-87. LIANG D, LI S Y, CHANG B Y, et al. Dynamic optimization for precision positioning parallel manipulator with redundant actuation[J]. Machine Design & Research, 2022, 38(5): 79-87.
|
|
|
| [[15]] |
王敏, 孙景健, 丁基恒, 等. 基于D-H参数与拉格朗日联立方程的仿生水蛇机器人运动学分析及动力学建模[J]. 机械工程学报, 2024, 60(15): 134-148. WANG M, SUN J J, DING J H, et al. Kinematics analysis and dynamics modeling of bionic water snake robot based on D-H parameters and Lagrange equations[J]. Journal of Mechanical Engineering, 2024, 60(15): 134-148.
|
|
|
| [[16]] |
刘凉, 汪博深, 冯建峰, 等. 含柔性动平台并联机器人动力学建模方法研究[J]. 农业机械学报, 2023, 54(12): 417-430. LIU L, WANG B S, FENG J F, et al. Dynamic modeling method of parallel robot with flexible moving platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 417-430.
|
|
|
| [[17]] |
翟国栋, 刘龙宇, 蔡晨光, 等. 直线电机驱动六自由度并联机构动力学特性研究[J]. 农业机械学报, 2022, 53(11): 450-458. ZHAI G D, LIU L Y, CAI C G, et al. Dynamic characteristics of 6-DOF parallel mechanism driven by linear motor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 450-458.
|
|
|
| [[18]] |
王福荣, 辛焦丽. 一种求解一般Stewart台体型机构位置正解的算法[J]. 机械传动, 2016, 40(7): 113-116. WANG F R, XIN J L. An algorithm for the forward position kinematics of general Stewart platform mechanism[J]. Journal of Mechanical Transmission, 2016, 40(7): 113-116.
|
|
|
| [[19]] |
程世利, 吴洪涛, 王超群, 等. 一般6-SPS并联机构运动学正解的解析化方法[J]. 中国机械工程, 2010, 21(11): 1261-1264. CHENG S L, WU H T, WANG C Q, et al. Analytical method for forward kinematics analysis of general 6-SPS parallel mechanisms[J]. China Mechanical Engineering, 2010, 21(11): 1261-1264.
|
|
|
| [[20]] |
黄昔光, 廖启征, 魏世民, 等. 一般6-6型平台并联机构位置正解代数消元法[J]. 机械工程学报, 2009, 45(1): 56-61. doi:10.3901/jme.2009.01.056 HUANG X G, LIAO Q Z, WEI S M, et al. Forward kinematics analysis of the general 6-6 platform parallel mechanism based on algebraic elimination[J]. Chinese Journal of Mechanical Engineering, 2009, 45(1): 56-61.
doi: 10.3901/jme.2009.01.056
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|