In view of the problems of parts damage and stability reduction caused by a large amount of vibration during roadheader cutting, the vibration characteristics of the new vertical-axis roadheader was analyzed and predicted based on the longitudinal cutting condition. Firstly, the force on the cutting head of the roadheader was analyzed, and the force on the track was analyzed by Bekker subsidence theory. Then, taking the contact force between track and bottom plate and the cutting load as external excitation, the longitudinal nonlinear dynamics model of roadheader was established by using Lagrange equation. Next, based on the Runge-Kutta variable step size algorithm, the dynamics model of roadheader was solved using MATLAB software, and the solution results were compared with experimental results to verify the correctness of the dynamics model. Finally, the dynamics model was used to predict the vibration displacement of key parts of the roadheader under different stabilizing mechanism stiffness. The results showed that the vibration of the whole roadheader was in a chaotic state under the combined influence of multiple external excitation. The roll vibration displacement was small, and the pitch vibration was dominant. With the increasing of the stabilizing mechanism stiffness, the vibration displacement of key parts of the roadheader showed a significant decreasing trend. When the stiffness of the stabilizing mechanism increased to 3 times of the initial stiffness, the vibration displacement of the roadheader body decreased by 29%, the vibration displacement of the cutting arm decreased by 22%, and the vibration displacement of the cutting head decreased by 20%. The research results prove that the vibration response of roadheader can be reduced effectively by increasing the stiffness of stabilizing mechanism, which provides theoretical basis for the stability improvement and structural optimization of roadheader.
Miao XIE,Junjie SHI,Hongyu ZHANG,Yun ZHU. Prediction of longitudinal vibration characteristics of new vertical-axis roadheader under multiple excitation. Chinese Journal of Engineering Design, 2023, 30(6): 728-737.
Fig.1 Longitudinal force analysis for cutting head
Fig.2 Longitudinal nonlinear dynamics model of new vertical-axis roadheader
参数
量值
截割头等效质量m1
1 050 kg
截割臂等效质量m21
2 155 kg
回转台等效质量m22
1 060 kg
机身等效质量m3
58 200 kg
履带支撑点等效质量ma、mb、mc、md
1 937 kg
铲斗等效质量me
1 500 kg
后支撑等效质量mf、mg
700 kg
机身俯仰转动惯量J1
5 900 kg·m2
机身横滚转动惯量J2
3 100 kg·m2
截割头与截割臂连接处等效刚度k1
2.1×105 N/m
支撑油缸的等效刚度k2
4.2×105 N/m
回转油缸的等效刚度k21、k22
3.1×105 N/m
回转台与机身连接处等效刚度k3
5.5×106 N/m
支稳机构与机身连接处等效刚度k31、k32
1.7×105 N/m
履带与机身连接处等效刚度ka、kb、kc、kd
2.7×105 N/m
铲斗与机身连接处等效刚度ke
3.6×105 N/m
后支撑与机身连接处等效刚度kf、kg
4.7×105 N/m
截割头与截割臂连接处等效阻尼c1
150 N·s/m
支撑油缸的等效阻尼c2
120 N·s/m
回转油缸的等效阻尼c21、c22
100 N·s/m
回转台与机身连接处等效阻尼c3
70 N·s/m
支稳机构与机身连接处等效阻尼c31、c32
140 N·s/m
履带与机身连接处等效阻尼ca、cb、cc、cd
240 N·s/m
铲斗与机身连接处等效阻尼ce
100 N·s/m
后支撑与机身连接处等效阻尼cf、cg
120 N·s/m
截割臂支撑油缸与回转台所成夹角θ
25o
回转油缸与回转台所成夹角β、γ
21o
铲斗油缸与机身所成夹角α
-32o
后支撑与机身所成夹角σ、τ
-44o
履带前支撑点到铲斗与机身连接点的距离p
0.40 m
机身重心与履带前支撑点的距离q
1.20 m
机身重心与履带后支撑点的距离r
1.28 m
履带后支撑点与后支撑的距离s
0.52 m
机身重心与各支撑结构的距离u、v、t、w
0.80 m
Table 1Key parameters of new vertical-axis road-header
Fig.3 Theoretical vibration displacement curve of each part of roadheader
Fig.4 Vibration amplitude frequency curve of gravity center of roadheader body
Fig.5 Variation curves of pitch angle and roll angle of roadheader body
Fig.6 Vibration phase diagram of roadheader body
Fig.7 Experimental bench for roadheader cutting‒vibration test
Fig.8 Measured displacement curve of each part of roadheader
对比项
振动位移峰值
振动位移均方根值
截割头
截割臂
机身
截割头
截割臂
机身
相对误差/%
27.12
16.13
8.87
9.11
11.42
7.08
理论计算值
16.15
9.46
4.51
4.59
3.49
2.54
实测值
22.16
11.28
4.11
5.05
3.94
2.36
Table 2Comparison of theoretical calculation value and measured value of vibration displacement of roadheader
Fig.9 Vibration displacement curves of roadheader under different stabilizing mechanism stiffness
Fig.10 Comparison of root mean square value of vibration displacement of roadheader under different stabilizing mechanism stiffness
[1]
谢苗,朱昀,刘杰,等.基于改进离散方法的截割稳定性预测分析[J].中国机械工程,2023,34(18):2153-2164. doi:10.3969/j.issn.1004-132X.2023.18.002 XIE M, ZHU Y, LIU J, et al. Prediction and analysis of cutting stability based on improved discrete method[J]. China Mechanical Engineering, 2023, 34(18): 2153-2164.
doi: 10.3969/j.issn.1004-132X.2023.18.002
[2]
卢进南,毛君,谢苗,等.巷道超前支架全支撑态动力学模型[J].煤炭学报,2015,40(1):50-57. LU J N, MAO J, XIE M, et al. Dynamics model of advanced powered support in heading under full support situation[J]. Journal of China Coal Society, 2015, 40(1): 50-57.
[3]
谢苗,张保国,王鹏飞,等.基于相似理论的掘进机主动激振截割性能研究[J].工程设计学报,2021,28(5):576-584. doi:10.3785/j.issn.1006-754X.2021.00.075 XIE M, ZHANG B G, WANG P F, et al. Research on active excitation cutting performance of roadheader based on similarity theory[J]. Chinese Journal of Engineering Design, 2021, 28(5): 576-584.
doi: 10.3785/j.issn.1006-754X.2021.00.075
[4]
李晓豁,何洋,李婷,等.纵轴式掘进机横向和纵向随机振动响应的分析[J].煤炭学报,2014,39(3):580-585. LI X H, HE Y, LI T, et al. Analysis of horizontal and vertical random vibration responses of longitudinal roadheader[J]. Journal of China Coal Society, 2014, 39(3): 580-585.
[5]
李晓豁,刘霞,焦丽,等.不同工况下滑行式刨煤机的动态仿真研究[J].煤炭学报,2010,35(7):1202-1206. LI X H, LIU X, JIAO L, et al. Dynamic simulation of sliding coal plow under different working conditions[J]. Journal of China Coal Society, 2010, 35(7): 1202-1206.
[6]
李晓豁.掘进机截割头随机载荷的模拟研究[J].煤炭学报,2000,25(5):525-529. doi:10.3321/j.issn:0253-9993.2000.05.018 LI X H. Simulation study of random loads on a cutting head of roadheader[J]. Journal of China Coal Society, 2000, 25(5): 525-529.
doi: 10.3321/j.issn:0253-9993.2000.05.018
[7]
陈洪月,刘烈北,马英,等.随机激励下掘锚联合机纵向非线性振动特性分析[J].中国机械工程,2015,26(17):2378-2384. doi:10.3969/j.issn.1004-132X.2015.17.018 CHEN H Y, LIU L B, MA Y, et al. Analysis of vertical nonlinear vibration characteristics for bolter system on roadheader under random excitation[J]. China Mechanical Engineering, 2015, 26(17): 2378-2384.
doi: 10.3969/j.issn.1004-132X.2015.17.018
[8]
李晓豁,沃鸣杰,邓云,等.基于履带与底板交互作用的掘进机虚拟样机建模及仿真[J].世界科技研究与发展,2012,34(6):885-887. doi:10.3969/j.issn.1006-6055.2012.06.003 LI X H, WO M J, DENG Y, et al. Virtual prototype modeling of roadheader based on interaction between ground and track[J]. World Sci-Tech R & D, 2012, 34(6): 885-887.
doi: 10.3969/j.issn.1006-6055.2012.06.003
[9]
刘丽娟.EBZ-132型纵轴式掘进机虚拟样机建模与动力学分析[D].武汉:中国地质大学,2013:26-36. doi:10.4028/www.scientific.net/amm.278-280.295 LIU L J. Virtual prototype modeling and dynamics analysis of EBZ-132-type longitudinal roadheader[D]. Wuhan: China University of Mining Technology, 2013: 26-36.
doi: 10.4028/www.scientific.net/amm.278-280.295
[10]
周游,李国顺,唐进元.截齿截割煤岩的LS_DYNA仿真模拟[J].工程设计学报,2011,18(2):103-108. doi:10.3785/j.issn.1006-754X.2011.02.006 ZHOU Y, LI G S, TANG J Y. Simulation and analysis for pick cutting rock by LS_DYNA[J]. Chinese Journal of Engineering Design, 2011, 18(2): 103-108.
doi: 10.3785/j.issn.1006-754X.2011.02.006
[11]
李军,李强,周靖凯,等.软土条件下履带-地面相互作用分析[J].兵工学报,2012,33(12):1423-1429. LI J, LI Q, ZHOU J K, et al. Analysis of track-terrain interaction on soft soil[J]. Acta Armamentarii, 2012, 33(12): 1423-1429.
[12]
刘辉,靳帅.不同工况下掘进机水平方向振动特性分析[J].机械设计与研究,2020,36(5):198-202. LIU H, JIN S. Analysis of horizontal vibration characteristics of roadheader under different working conditions[J]. Machine Design & Research, 2020, 36(5): 198-202.
[13]
何洋,李晓豁,席亚兵.纵轴式掘进机截割头振动特性分析[J].机械设计与研究,2023,39(2):176-181. HE Y, LI X H, XI Y B. Vibration characteristics analyzing of cutting head for longitudinal roadheader[J]. Machine Design & Research, 2023, 39(2): 176-181.
[14]
李晓婧.含有主动激振的掘进机系统振动特性及其对截割载荷的影响研究[D].阜新:辽宁工程技术大学,2019:32-62. LI X J. Study on vibration characteristics of roadheader system with active excitation and its influence on cutting load[D]. Fuxin: Liaoning Technical University, 2019: 32-62.
[15]
陈洪月,王箐谕,张坤,等.基于虚拟激励法的采煤机截割部振动响应分析[J].机械设计,2019,36(12):57-64. CHEN H Y, WANG Q Y, ZHANG K, et al. Vibration-response analysis on the shearer’s cutting section based on the virtual excitation method[J]. Journal of Machine Design, 2019, 36(12): 57-64.
[16]
谢苗,王贺,刘杰,等.基于振动模型的掘进机截割系统稳定性预测[J].振动、测试与诊断,2023,43(3):563-571. XIE M, WANG H, LIU J, et al. Stability prediction of roadheader cutting system based on vibration model[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(3): 563-571.
[17]
张美晨,赵丽娟,李明昊,等.基于双向耦合法的采煤机螺旋滚筒振动特性分析及实验研究[J/OL].煤炭科学技术:1-16(2023-06-07)[2023-07-06].. ZHANG M C, ZHAO L J, LI M H, et al. Analysis and experimental study on the vibration characteristics of the spiral drum of a shearer based on twoway coupling method[J/OL]. Coal Science and Technology: 1-16 (2023-06-07) [2023-07-06]. .
[18]
杨阳.基于振动测试的掘进机关键结构动态特性研究[D].北京:中国矿业大学(北京),2017:105-135. YANG Y. Research on the dynamic features of the critical structures on the road-header based on vibration measurements underground[D]. Beijing: China University of Mining and Technology-Beijing, 2017: 105-135.
[19]
赵丽娟,田震,孙影,等.纵轴式掘进机振动特性研究[J]. 振动与冲击,2013,32(11):17-20. doi:10.3969/j.issn.1000-3835.2013.11.004 ZHAO L J, TIAN Z, SUN Y, et al. Vibration characteristics of a longitudinal roadheader[J]. Journal of Vibration and Shock, 2013, 32(11): 17-20.
doi: 10.3969/j.issn.1000-3835.2013.11.004
[20]
李朋朋,刘纪平,闫浩文,等.基于方向关系矩阵的空间方向相似性计算改进模型[J].测绘科学技术学报,2018,35(2):216-220. LI P P, LIU J P, YAN H W, et al. An improved model for calculating the similarity of spatial direction based on direction relation matrix[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 216-220.