Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (5): 532-538    DOI: 10.3785/j.issn.1006-754X.2018.05.006
    
Design and simulation of new vibration isolation platform for vehicle medical rescue
WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong
School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Download: HTML     PDF(2542KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Vibration isolation platform for vehicle medical rescue is a kind of special ambulance equipment for the sick and wounded with vehicle as the carrier. In order to avoid the secondary injury caused by vehicle vibration during transportation to the greatest extent and obtain the best damping effect, a new type of vibration isolation platform for vehicle medical rescue was designed, which has the characteristics of large ratio of length to width and multi-layer series connection. Then, to get the key isolation parameters of the platform, the physical model of the platform was established, and the state equation of the platform was established by Lagrange method based on analytical mechanics. The vibration isolation parameters of the platform were optimized by MATLAB software under typical excitation. The optimal stiffness and damping coefficients of the vibration isolation platform were obtained. Finally, to study the damping effect of vibration isolation platform in the vehicle running process, the whole system dynamics model of vibration isolation platform based on vehicle passive suspension was established, and the output response of vibration isolation platform excited by two typical road surfaces including sloping pavement and sinusoidal undulating pavement, was simulated by ADAMS software. The results showed that the vibration isolation platform could greatly attenuate the impact and vibration from the ground, especially for bad road conditions. The structure and parameter design of the platform conform to the engineering practice, and the adopted optimization method, the modeling and simulation of the whole system are correct and effective.



Key wordsvibration isolation platform      parameter optimization      passive suspension      whole system dynamics model     
Received: 12 March 2018      Published: 28 October 2018
CLC:  TP391.9  
  TH113.1  
Cite this article:

WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.05.006     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I5/532


新型车载医疗救护隔振平台设计及仿真

车载医疗救护隔振平台是一种以车辆为载体的伤病员专用救护装备。为了最大程度地避免伤病员在运送中因车辆振动而造成的二次伤害,获得最佳减振效果,设计了一款新型车载医疗救护隔振平台,它具有大长宽比、多层串联的结构特点。为了获得该平台的关键隔振参数,建立了隔振平台的物理模型,并采用基于分析力学的拉格朗日法建立了平台的状态方程,应用MATLAB软件对在典型激励作用下的隔振参数进行了优化,得到了最优的平台减振弹簧刚度和阻尼。最后,为了研究该新型隔振平台在车辆运行过程中的减振效果,建立了基于被动悬架的隔振平台全系统动力学模型,并采用ADAMS软件仿真分析了在斜坡路面和正弦起伏路面两种典型激励下的隔振平台的输出响应。结果表明,该隔振平台能够极大地衰减来自地面的冲击和振动,尤其对于恶劣路况,其减振效果更佳。该隔振平台结构及参数设计符合工程实际,所采用的优化方法和全系统建模及仿真方法正确、有效。


关键词: 隔振平台,  参数优化,  被动悬架,  全系统动力学模型 
[[1]]   ZHOU N, LIU K. A tunable high-static-low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9):1254-1273.
[[2]]   ROBERTSON W S, KIDNER M R F, CAZZOLATO B S, et al. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation[J]. Journal of Sound and Vibration, 2009, 326(1/2):88-103.
[[3]]   SHAW A D, NEILD S A, WAGG D J, et al. A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation[J]. Journal of Sound and Vibration, 2013, 332(24):6265-6275.
[[4]]   MIKHAILOY V P, BAZINENKOV A M. A vibration control platform on the basis of magnetorheological elastomers[J]. Instruments and Experimental Techniques, 2016, 59(1):131-135.
[[5]]   KHAN Irfan Ullah, DAVID Wagg, NEIL D Sims. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control[J]. Smart Materials and Structures, 2016, 25(8):1-15.
[[6]]   SHAN Yu-hu, WU Wen-jiang, CHEN Xue-dong. Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J]. Journal of Vibration and Acoustics, 2015, 137(4):1-8.
[[7]]   LU Ze-qi, YANG Tie-jun, BRENNAN Michael J, et al. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness[J]. Journal of Applied Mechanics, 2017, 84(2):1-9.
[[8]]   XU Zhao-dong, ASCE A M, XU Fei-hong, et al. Intelligent vibration isolation and mitigation of a platform by using MR and VE devices[J]. Journal of Aerospace Engineering, 2016, 29(4):1-10.
[[9]]   LI Bing, ZHAO Wei, WANG Shuai, et al. Dynamic modeling and control for a five-dimensional hybrid vibration isolator based on a position/orientation decoupled parallel mechanism[J]. Journal of Vibration and Control, 2016, 22(15):3368-3383.
[[10]]   高蓬,孙大刚,梁培根,等.急救车载担架人工肌肉隔振系统特性分析[J].噪声与振动控制,2014,34(3):119-123. GAO Peng, SUN Da-gang, LIANG Pei-gen, et al. Characteristics analysis of pneumatic artificial muscle isolation systems on ambulance vehicle-mounted stretchers[J]. Noise and Vibration Control, 2014, 34(3):119-123.
[[11]]   赵宇坤,孙大刚,陈俊海,等.基于气动人工肌肉缓冲车载隔振平台特性研究[J].太原科技大学学报,2017,38(1):48-54. ZHAO Yu-kun, SUN Da-gang, CHEN Jun-hai, et al. Damping characteristics analysis of vehicular photoelectric platform with pneumatic artificial muscle[J]. Journal of Taiyuan University of Science and Technology, 2017, 38(1):48-54.
[[12]]   贾楠,牛静,耿欣.车载摄像稳定平台隔振系统优化研究[J].导航与控制,2015,14(4):100-106. JIA Nan, NIU Jing, GENG Xin. Research on optimization of carborne stabilized platform vibration isolation system[J]. Navigation and Control, 2015, 14(4):100-106.
[[13]]   姜昊,张立中,李小明,等.某车载平台电子设备抗振系统设计[J].长春理工大学学报(自然科学版),2016,39(5):13-19. JIANG Hao, ZHANG Li-zhong, LI Xiao-ming, et al. Anti-vibration systems design of a vehicle platform electronic equipment[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(5):13-19.
[[14]]   潘坤,丁洁玉,董贺威,等.基于重心插值的多体系统动力学离散变分方法[J].青岛大学学报(自然科学版),2017,30(2):77-82. PAN Kun, DING Jie-yu, DONG He-wei, et al. Discrete variation method of multi-body system dynamics based on center of gravity interpolation[J]. Journal of Qingdao University (Natural Science Edition), 2017, 30(2):77-82.
[[15]]   RIZVI S M H, ABID M, KHAN A Q, et al. H∞ control of 8 degrees of freedom vehicle active suspension system[J]. Journal of King Saud University-Engineering Sciences, 2016, 30(2):1-9.
[[16]]   王鑫,袁晓光,杨星.基于拉格朗日方法的飞行器多体分离姿态动力学分析研究[J].西北工业大学学报,2014,32(1):18-22. WANG Xin, YUAN Xiao-guang, YANG Xing. Research on multi-body separation dynamics using Lagrange method[J]. Journal of Northwestern Polytechnical University, 2014, 32(1):18-22.
[[17]]   TAHMASEBI M, ESMAILZADEH S M. Modeling and co-simulating of a large flexible satellites with three reaction wheels in ADAMS and MATLAB[J]. International Journal of Dynamics and Control, 2018, 6(1):79-88.
[[18]]   MONTEIRO T P, CANALE A C. Development of a direct-dynamic model for a passenger vehicle on MATLAB Simulink[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 39(2):1-16.
[[19]]   RANGASWAMY T, VIDHYASHANKAR S, MADHUSUDAN M, et al. Performance parameters analysis of an XD3P Peugeot engine using artificial neural networks (ANN) concept in MATLAB[J]. Journal of the Institution of Engineers (India):Series C, 2015, 96(2):175-182.
[1] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[2] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chinese Journal of Engineering Design, 2022, 29(6): 695-704.
[3] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[4] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[5] LI Yan-kui, LÜ Yan-ming, NI Ming-ming. The wear analysis of precision blasting die for aviation blades based on orthogonal test[J]. Chinese Journal of Engineering Design, 2017, 24(6): 632-637.
[6] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[7] LI Zhan-fu, TONG Xin. Modeling and parameter optimization for vibrating screens based on AFSA-SimpleMKL[J]. Chinese Journal of Engineering Design, 2016, 23(2): 181-187.
[8] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
[9] CUI Kai-Bo, QIN Jun-Qi, DI Chang-Chun, ZHANG Yan-Jun. Research on artillery structural parameter optimization based on ADAMS and CPSO algorithm[J]. Chinese Journal of Engineering Design, 2012, 19(4): 278-282.
[10] ZHU Bo, YANG Hong-Bo, ZHANG Jing-Xu, ZHANG Li-Min. Structure design and optimization of M3 in large-aperture telescope[J]. Chinese Journal of Engineering Design, 2010, 17(6): 469-472.