Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 348-356    DOI: 10.3785/j.issn.1006-754X.2024.03.170
Reliability and Quality Design     
Study on submarine pipeline suspension internal detection based on vibration response analysis
Wenbin MA1,2(),Zhiwen DUAN1,2,3,Xiang LI1,2,Hang ZHANG1,2()
1.College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2.Center of Advanced Oil and Gas Equipment, China University of Petroleum (Beijing), Beijing 102249, China
3.Qinhuangdao Oil and Gas Transportation Branch, National Pipe Network Group North Pipeline Co. , Ltd. , Qinhuangdao 066001, China
Download: HTML     PDF(4384KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Submarine pipelines laid in the seabed are often suspended due to natural or man-made factors such as ocean current erosion and ship anchoring, which can easily cause pipeline deformation, corrosion, damage, cracking and leakage, seriously affecting the safety of pipelines. Aiming at the suspension internal detection for DN200 submarine pipelines, an internal detection robot was designed, and its dynamics analysis was conducted. Meanwhile, a flexible pipeline-soil coupling model was established by combining ANSYS and ADAMS software, and the internal detection simulation analysis for suspended pipelines was carried out. The fast Fourier transform and the short-time Fourier transform were used to process the vibration response signal of the internal detection robot under complex excitation coupling conditions, and the effective identification of the suspended pipeline section was realized by analyzing the vibration acceleration of the robot. The research results provide a new idea for the internal detection of oil and gas pipelines in suspension.



Key wordssubmarine pipeline      suspension      internal detection robot      dynamics analysis      vibration response     
Received: 23 May 2023      Published: 27 June 2024
CLC:  TE 978  
Corresponding Authors: Hang ZHANG     E-mail: 18883487151@163.com;zhanghang@cup.edu.cn
Cite this article:

Wenbin MA,Zhiwen DUAN,Xiang LI,Hang ZHANG. Study on submarine pipeline suspension internal detection based on vibration response analysis. Chinese Journal of Engineering Design, 2024, 31(3): 348-356.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.170     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/348


基于振动响应分析的海底管道悬空内检测研究

铺设于海床中的海底管道常因洋流冲刷、船舶锚拽等自然或人为因素而处于悬空状态,易造成管道变形、腐蚀、损伤和开裂泄漏等问题,严重影响管线安全。针对DN200海底管道的悬空内检测,设计了一种内检测机器人并对其进行了动力学分析。同时,联合ANSYS与ADAMS软件建立了柔性管道-土耦合模型,开展了悬空管道内检测仿真分析。采用快速傅里叶变换和短时傅里叶变换方法对内检测机器人在复杂激励耦合条件下的振动响应信号进行处理,通过分析机器人的振动加速度实现了对悬空管段的有效识别。研究结果为油气管道悬空内检测提供了新思路。


关键词: 海底管道,  悬空,  内检测机器人,  动力学分析,  振动响应 
Fig.1 Overall structure and working principle of submarine pipeline suspension internal detection robot
Fig.2 Schematic of dynamics analysis of submarine pipeline suspension internal detection robot under excitation
Fig.3 Rigid body collision model
参数数值
综合曲率半径/m6.872×10-3
综合弹性模量/(N/m21.139×1011
接触刚度系数/(N/m)398.2
阻尼系数/(N·s/m)0.4
力指数1.5
法向穿透深度/m1×10-4
静摩擦系数0.3
动摩擦系数0.1
静平移速度/(m/s)1×10-4
摩擦平移速度/(m/s)1×10-3
Table 1 Parameter setting for collision simulation model
Fig.4 Finite element model of submarine pipeline
Fig.5 Flexible pipeline-soil coupling simulation model
Fig.6 Vibration acceleration amplitude of robot in normal pipeline section
Fig.7 Vibration acceleration amplitude of robot in normal pipeline section and suspended pipeline section
Fig.8 Time-domain characteristics of vibration acceleration of robot in different pipeline sections
Fig.9 Amplitude-frequency characteristics of vibration acceleration of robot in different pipeline sections
Fig.10 Time-frequency power amplitude spectrum of robot vibration acceleration
Fig.11 Vibration acceleration amplitude of robot in suspended pipeline sections with different lengths
Fig.12 Time-frequency power amplitude spectrum of robot vibration acceleration with different lengths of suspended pipeline sections
Fig.13 Time-domain diagram of power amplitude of robot vibration acceleration with different lengths of suspended pipeline sections (frequency range of 0~30 Hz)
Fig.14 Time-domain diagram of power amplitude of robot vibration acceleration with different lengths of suspended pipeline sections (frequency range of 50~80 Hz)
[1]   高鹏.2021年中国油气管道建设新进展[J].国际石油经济,2022,30(3):12-19. doi:10.3969/j.issn.1004-7298.2022.03.002
GAO P. New progress in China's oil and gas pipeline construction in 2021[J]. International Petroleum Economics, 2022, 30(3): 12-19.
doi: 10.3969/j.issn.1004-7298.2022.03.002
[2]   LIU Y, HU H, ZHANG D. Probability analysis of damage to offshore pipeline by ship factors[J]. Transportation Research Record, 2013, 2326(1): 24-31.
[3]   徐兴雨,齐静静,陈凯,等.埕岛油田海底管道悬空特征及其影响因素[J].海洋地质前沿,2023,39(1):77-84.
XU X Y, QI J J, CHEN K, et al. Suspension characteristics and influencing factors of submarine pipelines in the Chengdao Oilfield[J]. Marine Geology Frontiers, 2023, 39(1): 77-84.
[4]   KÖPKE U G, HUNT H E M. Identification of support conditions of buried pipes using a vibrating pig[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1993, 207(1): 29-40.
[5]   KÖPKE U G. Transverse vibration of buried pipelines due to internal excitation at a point[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1993, 207(1): 41-59.
[6]   潘峰,唐东林,陈印,等.管道腐蚀缺陷超声信号的PSO-SVM模式识别研究[J].机械科学与技术,2020,39(5):751-757.
PAN F, TANG D L, CHEN Y, et al. Ultrasonic signal pattern recognition of pipeline corrosion defects with PSO-SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 751-757.
[7]   LIAO N S, ZHANG H, ZHANG S M, et al. A method for identifying support conditions of buried subsea gas pipelines based on forced vibration signal analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(1): 218-228.
[8]   LIAO N S, ZHANG H, ZHANG S M. Experiment for identifying free span of buried gas pipeline under internal excitation load[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 215-222.
[9]   廖宁生,张行,张仕民,等.移动振动激励下的管道悬空内检测试验研究[J].石油矿场机械,2018,47(5):60-64. doi:10.3969/j.issn.1001-3482.2018.05.013
LIAO N S, ZHANG H, ZHANG S M, et al. Experimental research of pipeline free span detection under moving vibration excitation[J]. Oil Field Equipment, 2018, 47(5): 60-64.
doi: 10.3969/j.issn.1001-3482.2018.05.013
[10]   张行,杜书强,张仕民,等.基于管内主动激励的管道悬空检测模拟分析[J].石油机械,2017,45(8):105-110.
ZHANG H, DU S Q, ZHANG S M, et al. Simulation analysis of pipeline free span detection based on inner pipe active excitation[J]. China Petroleum Machinery, 2017, 45(8): 105-110.
[11]   张行,李振林, 啜广山,等.海底管道悬空锤击内检测方法及振动信号分析[J].石油机械,2023,51(3):68-75.
ZHANG H, LI Z L, CHUO G S, et al. Internal detection method and vibration signal analysis of suspended hammering of submarine pipelines[J]. China Petroleum Machinery, 2023, 51(3): 68-75.
[12]   贾邦龙,帅健,张银辉.海底管道悬空段状态检测及安全性评价[J].油气储运,2021,40(6):658-663. doi:10.6047/j.issn.1000-8241.2021.06.008
JIA B L, SHUAI J, ZHANG Y H. State detection and safety evaluation of submarine suspended pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(6): 658-663.
doi: 10.6047/j.issn.1000-8241.2021.06.008
[13]   黄维璇,李四平.刚体碰撞问题的Hamilton原理及其应用[J].中国科学:物理学 力学 天文学,2023,53(5):77-88. doi:10.1360/sspma-2022-0351
HUANG W X, LI S P. Hamilton's principle for rigid body collision problems and its applications[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(5): 77-88.
doi: 10.1360/sspma-2022-0351
[14]   黄杰,陈浩,刘国军,等.埋地铁磁管道环焊缝非开挖定位技术研究[J].机械科学与技术,2020,39(7):1048-1052.
HUANG J, CHEN H, LIU G J, et al. Research of non-excavation positioning technology of girth weld in underground ferromagnetic pipeline[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1048-1052.
[15]   胡玉飞,张建超,陈湛,等.内部激励下高速动车齿轮箱振动响应评估[J].北京交通大学学报,2022,46(4):148-156. doi:10.11860/j.issn.1673-0291.20210173
HU Y F, ZHANG J C, CHEN Z, et al. Evaluation of gearbox vibration response in high-speed train under internal excitation[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 148-156.
doi: 10.11860/j.issn.1673-0291.20210173
[16]   赵密,杜修力.时间卷积的局部高阶弹簧-阻尼-质量模型[J].工程力学,2009,26(5):8-18.
ZHAO M, DU X L. High-order model of spring-dashpot-mass model for localizing time convolution[J]. Engineering Mechanics, 2009, 26(5): 8-18.
[17]   刘兴华.洪水冲刷作用下悬空管道力学响应特性研究[J].油气田地面工程,2022,41(2):11-16,21. doi:10.3969/j.issn.1006-6896.2022.02.003
LIU X H. Study on mechanical response characteristics of suspended pipelines under flood scouring[J]. Oil-Gas Field Surface Engineering, 2022, 41(2): 11-16, 21.
doi: 10.3969/j.issn.1006-6896.2022.02.003
[18]   许利惟,刘旭,陈福全.塌陷作用下埋地悬空管道的力学响应分析[J].工程力学,2018,35(12):212-219,228.
XU L W, LIU X, CHEN F Q. Mechanical analysis of buried suspended pipeline under the action of collapse[J]. Engineering Mechanics, 2018, 35(12): 212-219, 228.
[19]   KANTARDGI I G, GOGIN A G. Submarine pipeline stability under stream and waves action[J]. Power Technology and Engineering, 2021, 55: 367-372.
[20]   XIE Y, MA X F, NING H F. Formation and failure mechanism of submarine suspension pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36: 1436-1442.
[21]   PENG X L, HAO H, LI Z X. Application of wavelet packet transform in subsea pipeline bedding condition assessment[J]. Engineering Structures, 2012, 39: 50-65.
[22]   LEE J Y. Variable short-time Fourier transform for vibration signals with transients[J]. Journal of Vibration and Control, 2015, 21(7): 1383-1397.
[23]   SAFIZADEH M S, LAKIS A A, THOMAS M. Using short-time Fourier transform in machinery diagnosis[C]//Proceedings of the 4th WSEAS International Conference on Electronic, Signal Processing and Control. Wisconsin, Apr. 25-27, 2005.
[24]   张泽宇,惠记庄,石泽.小波包最优基分解树的降噪滤波方法研究[J].机械科学与技术,2020,39(1):28-34.
ZHANG Z Y, HUI J Z, SHI Z. Research on denoising and filtering method based on wavelet packet optimal base decomposition tree[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 28-34.
[1] Yongguang ZHENG,Mei YANG. Experimental study of vibration characteristics of TBM cutter holder system under typical strata[J]. Chinese Journal of Engineering Design, 2024, 31(2): 263-270.
[2] Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chinese Journal of Engineering Design, 2022, 29(2): 176-186.
[3] YE Jin-tao, LIU Feng-li, HAO Yong-ping, LIU Shuang-jie, GUO Meng-hui, FENG Zhuo-hang. Design and analysis of a bionic flapping wing aircraft flying at ultra-low altitude[J]. Chinese Journal of Engineering Design, 2021, 28(4): 473-479.
[4] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[5] ZHANG Jin, LIU Pei-shan, YIN Yu-feng. Design and dynamic characteristics analysis of Y-shaped rotary ultrasonic motor[J]. Chinese Journal of Engineering Design, 2021, 28(2): 248-254.
[6] MO Li, JIA Du-ping, MAO Liang-jie, WANG Guo-rong. Experimental study on the vibration mechanism of horizontal well completion pipe string under different gas production[J]. Chinese Journal of Engineering Design, 2020, 27(6): 690-697.
[7] LI Hai-yue, CHENG Ze, ZHAO Dan-ni, WANG Hao-wei, LI De-yong, ZHANG Jia-bo, SONG Xiao-dong, ZHAO Lin-na. Research on multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air flotation method[J]. Chinese Journal of Engineering Design, 2020, 27(4): 508-515.
[8] YAO Jia-ling, TANG Zheng, BAI Ya-nan. Coordinated control of roll and smoothness of vehicle based on shear magnetorheological damper[J]. Chinese Journal of Engineering Design, 2020, 27(2): 191-198.
[9] YAO Tao, WANG Zhi-hua, DUAN Guo-lin, WANG Tao. Study on energy conversion performance of direct-driven wave energy converter based on Stewart parallel mechanism[J]. Chinese Journal of Engineering Design, 2019, 26(5): 587-593.
[10] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chinese Journal of Engineering Design, 2019, 26(1): 95-101.
[11] HUANG Zhi-qiang, PENG Xun, LI Gang. Study on contact property and energy transfer between vibrator baseplate and ground[J]. Chinese Journal of Engineering Design, 2019, 26(1): 102-109.
[12] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.
[13] HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate[J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[14] LING Jing-xiu, SUN Wei, YANG Xiao-jing, TONG Xin. Vibration response analysis of TBM cutterhead system under multi-point distributed loads[J]. Chinese Journal of Engineering Design, 2017, 24(3): 317-322.
[15] YANG Shao-yong, LEI Fei, CHEN Yuan. Structure optimization of a carbon fiber reinforced composite suspension control arm based on the lay up design features[J]. Chinese Journal of Engineering Design, 2016, 23(6): 600-605,619.