Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 176-186    DOI: 10.3785/j.issn.1006-754X.2022.00.022
Optimization Design     
Suspension balance analysis and counterweight optimization design of AUV docking device
Chuan-long XIN1,2,3(),Rong ZHENG1,2(),Fu-lin REN1,2,Hong-guang LIANG1,2
1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(3329KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to ensure the balance and stability of the opening and closing docking device of the AUV (autonomous underwater vehicle) when it is in the single point mooring suspension statin in water, the counterweight optimization design must be carried out.Through the displacement analysis of the opening and closing docking mechanism, the position variation range of gravity center and buoyancy center of the docking device was obtained; based on the static theory, the relationship between the relative positions of gravity center, buoyancy center, towing point and the suspension balance trim angle of the docking device was established and analyzed. In order to reduce the suspension balance trim angle and its fluctuating value of the docking device and minimize the mass of the docking device after counterweight, the counterweight optimization model of AUV docking device was established. And the optimal design of counterweight parameters such as characteristics size of counterweight lead blocks, buoyant material and towing point positions was carried out adopting SQP (sequential quadratic programming) method. Through the experiment of single point mooring suspension of the docking device, it was verified that the docking device met the design requirements after counterweight optimization. The results showed that compared with the free towing frame, using fixed towing frame could increase the vertical distance between the towing point and gravity center, which was very conducive to the underwater suspension balance of the device; compared with empirical counterweight design, after configuration optimization, the total mass of the device was reduced by about 13.4 kg, the fluctuating value of suspension balance trim anglewas reduced by about 90.68%, and the metacentric height was increased by about 7.63 mm. The mooring suspension balance of AUV connection system after counterweight optimization was in good condition. The establishment and analysis results of the counterweight optimization model have certain guiding significance for the counterweight design of the underwater docking towing body and its towing frame scheme design.



Key wordsunderwater connection system      underwater docking      balance weight design      counterweight optimization      single point mooring suspension docking     
Received: 18 March 2021      Published: 10 May 2022
CLC:  TH 122  
Corresponding Authors: Rong ZHENG     E-mail: xinchuanlong@gis.sia.cn;zhengr@sia.cn
Cite this article:

Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device. Chin J Eng Design, 2022, 29(2): 176-186.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.022     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/176


AUV接驳装置悬浮平衡分析与配重优化设计

为了保证用于对接回转型自主水下机器人(autonomous underwater vehicle, AUV)的开合式接驳装置处于水下单点系泊悬浮状态时的平衡与稳定,须对其进行配重优化设计。通过对开合对接机构的位移分析,获得接驳装置体重心和浮心位置的变化范围;基于静力学理论,建立并分析重心、浮心和拖点的相对位置与接驳装置悬浮平衡纵倾角的关系。为了使接驳装置悬浮平衡纵倾角及其波动幅值小,及配重后接驳装置的质量最小,建立AUV接驳装置配重优化模型,并采用序列二次规划(sequential quadratic programming, SQP)方法对配重铅块、浮力材的特征尺寸和拖点位置等配重参数进行优化设计。通过接驳装置单点系泊悬浮实验,验证了优化配重后接驳装置满足设计要求。研究结果表明:相比自由拖架形式,采用固定拖架形式可以增大拖点与重心之间的垂向距离,非常有利于装置的水下悬浮平衡;相比经验配重设计,优化配置后装置总质量约减小了13.4 kg,悬浮平衡纵倾角波动幅值约减小90.68%,稳心高约增加7.63 mm,配重优化后AUV接驳装置系泊悬浮平衡状态良好。配重优化模型的建立及分析结果对水下接驳拖体的衡重设计及其拖架方案设计具有一定的指导意义。


关键词: 水下接驳系统,  水下对接,  衡重设计,  配重优化,  单点系泊悬浮对接 
Fig.1 Integrated system of AUV independently deployed by USV
Fig.2 Structure of opening and closing docking device
Fig.3 Schematic of opening and closing docking mechanism
Fig.4 Block diagram of Newton-Simpson numerical algorithm
Fig.5 Force analysis of suspension balance of docking device
Fig.6 Relationship between the positions of gravity center, buoyancy center and the suspension balance trim angle
Fig.7 Feasible region of relative position change of gravity center and buoyancy center
Fig.8 Relationship between towing point position and suspension balance trim angle
Fig.9 Influence of trailer length on suspension balance trim angle
Fig.10 Characteristic section of counterweight components
Fig.11 Optimization problem solving process
对比项初始设计配重优化后
h[210 mm, 200 mm, 60 mm, 260 mm, 310 mm, 90°][210 mm, 200 mm, 60 mm, 260 mm, 310 mm, 90°][178.544 9 mm, 212.819 7 mm, 130, 320 mm, 380, mm, 95°][178 mm, 213 mm, 130 mm, 320 mm, 380 mm, 95°]
m/kg371.350 7371.350 7358.255 4357.935 5
θ/(°)(-7.37, 0.124 7)(0.008 4, 0.502 1)(0.086 1, 0.586 1)(0.110 7, 0.785 9 )
θv/(°)7.245 30.493 70.50.675 3
zGB /mm17.374 217.374 22524.999 9
拖架形式自由铰接拖架可调固定拖架可调固定拖架
Table 1 Design variable value and target value before and after counterweight optimization
Fig.12 Experiment site of single point mooring suspension of docking device
Fig.13 Influence of guide cover action on suspension balance trim angle when λ = 95°
Fig.14 Influence of carriage position on suspension balance trim angle
Fig.15 Relationship between suspension balance trim angle and carriage angle
[1]   蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁 科学技术出版社,2000:1-10.
JIANG Xin-song, FENG Xi-sheng, WANG Di-tang. Unmanned underwater vehicles[M]. Shenyang: Liaoning Science and Technology Press, 2000: 1-10.
[2]   孙庆刚,郑荣,安家玉,等.基于浮力调节系统的AUV定深悬浮控制[J].海洋技术学报,2017,36(6):33-37. doi:10.3969/j.issn.1003-2029.2017.06.006
SUN Qing-gang, ZHENG Rong, AN Jia-yu, et al. Study on the AUV depth and hovering control based on variable buoyancy system[J]. Journal of Ocean Technology, 2017, 36(6): 33-37.
doi: 10.3969/j.issn.1003-2029.2017.06.006
[3]   罗阳,陶建国,邓立平,等.水下焊接机器人变质心补偿控制[J].机器人,2020,42(3):289-300. doi:10.13973/j.cnki.robot.190293
LUO Yang, TAO Jian-guo, DENG Li-ping, et al. Centroid variability compensation control of underwater welding vehicle[J]. Robot, 2020, 42(3): 289-300.
doi: 10.13973/j.cnki.robot.190293
[4]   孙烨,司先才,裴建新,等.一种水下拖曳体的运动特性模拟研究[J].船舶工程,2018,40(S1):330-334.
SUN Ye, SI Xian-cai, PEI Jian-xin, et al. Simulation study of dynamic characteristics of one underwater towed vehicle[J]. Ship Engineering, 2018, 40(S1): 330-334.
[5]   俞建成,张奇峰,吴利红,等.水下滑翔机器人运动调节机构设计与运动性能分析[J].机器人,2005,27(5):390-395.
YU Jian-cheng, ZHANG Qi-feng, WU Hong-li, et al. Movement mechanism design and motion performance analysis of an underwater glider[J]. Robot, 2005, 27(5): 390-395.
[6]   孙洪鸣,郭威,周悦,等.全海深着陆车机构设计及其潜浮运动性能分析[J].机器人,2020,42(2):207-214. doi:10.13973/j.cnki.robot.190375
SUN Hong-ming, GUO Wei, ZHOU Yue, et al. Mechanism design and diving-floating motion performance analysis on the full ocean depth landing vehicle[J]. Robot, 2020, 42(2): 207-214.
doi: 10.13973/j.cnki.robot.190375
[7]   郑荣,辛传龙,汤钟,等.无人水面艇自主部署自主水下机器人平台技术综述[J].兵工学报,2020,41(8):1675-1687. doi:10.3969/j.issn.1000-1093.2020.08.022
ZHENG Rong, XIN Chuan-long, TANG Zhong, et al. Review on the platform technology of autonomous deployment of AUV by USV[J]. Acta Armamentarii, 2020, 41(8): 1675-1687.
doi: 10.3969/j.issn.1000-1093.2020.08.022
[8]   GUO Jing-qian, ZHENG Rong, YU Xiao-lei, et al. Autonomous underwater vehicle docking system based on wired transmission[C]//Proceedings of the 1st WRC Symposium on Advanced Robotics and Automation, Beijing, China, August 16, 2018.
[9]   王志博.海洋拖曳系统动力学与设计[M].北京:国防工业出版社,2019:1-18.
WANG Zhi-bo. Dynamics and design of ocean towing system[M]. Beijing: National Defense Industry Press, 2019: 1-18.
[10]   兰晓娟,孙汉旭,贾庆轩,等.水下球形机器人BYSQ-2型的结构设计与优化[J].北京邮电大学学报,2012,35(4): 11-14,23. doi:10.3969/j.issn.1007-5321.2012.04.003
LAN Xiao-juan, SUN Han-xu, JIA Qing-xuan, et al. Design and optimization of a spherical underwater vehicle BYSQ-2′s structure[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4): 11-14, 23.
doi: 10.3969/j.issn.1007-5321.2012.04.003
[11]   游进,田政,侯向阳.基于遗传算法的再入航天器配重布局优化[J].航天器工程,2015,24(1):56-61. doi:10.3969/j.issn.1673-8748.2015.01.010
YOU Jin, TIAN Zheng, HOU Xiang-yang. Genetic algorithm based optimization of counterweight distribution for reentry vehicle[J]. Spacecraft Engineering, 2015, 24(1): 56-61.
doi: 10.3969/j.issn.1673-8748.2015.01.010
[12]   郭仁生.机械工程设计分析和MATLAB应用[M]. 北京:机械工业出版社, 2014:83-134.
GUO Ren-sheng. Mechanical engineering design analysis and MATLAB application[M]. Beijing: China Machine Press, 2014: 83-134.
[13]   谌庆荣,程文明,王书标,等.叉车转向机构运动学与力学分析及多目标优化[J].华中科技大学学报(自然科学版), 2017,45(5):72-76.
CHEN Qing-rong, CHENG Wen-ming, WANG Shu-biao, et al. Kinematic and mechanical analysis and multi-objective optimization of steering linkages for forklift truck[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(5): 72-76.
[14]   薛定宇.MATLAB最优化计算[M]. 北京:清华大学出版社, 2020:126-166. doi:10.1515/9783110667011
XUE Ding-yü. MATLAB optimization calculation[M]. Beijing: Tsinghua University Press, 2020: 126-166.
doi: 10.1515/9783110667011
[1] XIN Chuan-long, ZHENG Rong, YANG Bo. Research on the design and connection control scheme of AUV underwater docking system[J]. Chin J Eng Design, 2021, 28(5): 633-645.