Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 187-195    DOI: 10.3785/j.issn.1006-754X.2022.00.011
Optimization Design     
A multi-objective trajectory optimization algorithm for industrial robot
Qin LI1(),Ying-qi JIA1,Yu-feng HUANG2,Gang LI1,Chuang YE1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Eastern Geophysical Exploration Co. , Ltd. , China National Petroleum Corporation, Zhuozhou 072750, China
Download: HTML     PDF(2338KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problems of low work efficiency, serious energy loss and large joint impact wear of industrial robots, a hybrid algorithm (referred to as CSNSGA-II) based on cuckoo search (CS) algorithm and non-dominated sorting genetic algorithm-II (NSGA-II) was proposed for trajectory optimization of robots. The quintic non-uniform rational B-splines (NURBS) curve was used as the trajectory planning curve of the industrial robot. At the same time, the motion time, energy consumption and impact wear were taken as the optimization objectives and the corresponding multi-objective trajectory optimization model was constructed. Under the constraints of speed, acceleration and jerk, the CSNSGA-II was used to optimize trajectory. The CSNSGA-II initialized the time series with the Tent chaotic map, and used the infeasibility algorithm to divide the solutions into feasible solution and infeasible solution, and then the infeasible solution was processed by the improved CS algorithm. The 6R Bronte robot was modeled and simulated by using the MATLAB software, and the obtaind non-dominated solution set and the normalized weighted iterative optimal value were compared and analyzed. The simulation results showed that, compared with the NSGA-II and the multi-objective particle swarm optimization (MOPSO) algorithm, the proposed CSNSGA-II could optimize the trajectory of 6R Bronte robot more effectively, and the non-dominated solution set was more uniform and close to the real Pareto front, and the final trajectory curve was relatively smooth, which could meet the requirements of high efficiency, low energy consumption and less impact wear of 6R Bronte robot at the same time. The proposed method can provide guidance for further promoting the widespread application of industrial robots in production and improving production capacity and efficiency.



Key wordsindustrial robot      trajectory planning      non-uniform rational B-splines (NURBS) curve      multi-objective optimization      non-dominated sorting genetic algorithm-II (NSGA-II)      cuckoo search (CS) algorithm     
Received: 16 March 2021      Published: 06 May 2022
CLC:  TP 242  
Cite this article:

Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot. Chin J Eng Design, 2022, 29(2): 187-195.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.011     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/187


一种工业机器人多目标轨迹优化算法

为解决工业机器人工作效率低、能耗损失严重和关节冲击磨损较大的问题,提出了一种基于布谷鸟搜索(cuckoo search, CS)算法和非支配排序遗传算法-II(non-dominated sorting genetic algorithm-II, NSGA-II)的混合算法(简称为CSNSGA-II),用于机器人的轨迹优化。采用5次非均匀有理B样条(non-uniform rational B-splines, NURBS)曲线作为工业机器人的轨迹规划曲线,同时以运动时间、能耗和冲击磨损为优化目标构建相应的多目标轨迹优化模型,并在速度、加速度和加加速度的约束下采用CSNSGA-II进行轨迹优化。CSNSGA-II以Tent混沌映射初始化时间序列,采用不可行度算法将解分为可行解与不可行解,并利用改进的CS算法对不可行解进行处理。利用MATLAB软件对6R勃朗特机器人进行建模仿真,并对得到的非支配解集和归一化加权迭代最优值进行对比分析。仿真结果表明,相比于NSGA-II、多目标粒子群优化(multi-objective particle swarm optimization, MOPSO)算法,所提出的CSNSGA-II可更有效地对6R勃朗特机器人的轨迹进行优化,所得非支配解集更加均匀且接近真实Pareto前沿,最终得到的轨迹曲线较为平滑,可同时满足6R勃朗特机器人的高效率、低能耗及少冲击磨损的要求。所提出的方法可为进一步推动工业机器人在生产中的广泛应用以及提高生产能力和效率提供指导。


关键词: 工业机器人,  轨迹规划,  非均匀有理B样条(NURBS)曲线,  多目标优化,  非支配排序遗传算法-II(NSGA-II),  布谷鸟搜索(CS)算法 
Fig.1 Flow chart of CSNSGA-II
Fig.2 Physical object of 6R Bronte robot
关节mp1p2p3p4p5p6p7p8
1-14.40-25.20-43.20-64.80-86.40-79.20-115.20-126.00
2-115.20-93.60-82.80-72.00-50.40-74.73-43.20-28.80
354.0039.6028.8010.80-3.6044.507.200
400000000
561.2054.0042.1564.3252.3430.2336.0028.80
675.6064.8046.8025.203.6010.80-25.20-36.00
Table 1 Position of each joint trajectory point of 6R Bronte robot
Fig.3 Position of 6R Bronte robot at the moment of start
Fig.4 Position of 6R Bronte robot at the moment of stop
关节mvm /(°)·s-1am /(°)·s-2jm /(°)·s-3
11006060
2956066
31007585
41507070
51309075
61108070
Table 2 Kinematic constraints of each joint of 6R Bronte robot
Fig.5 Comparison of Pareto front distribution of 6R Bronte robot based on different algorithms
优化解S1/sS2/(°)·s-2S3/(°)·s-3
A113.640 535.780 046.704 7
B119.380 417.173 114.517 7
C134.914 75.113 72.409 3
A214.479 339.637 548.826 2
B219.399 618.770 517.431 0
C234.905 25.470 52.752 5
A317.183 743.795 248.581 1
B319.922 217.919 215.717 6
C335.141 95.047 92.536 4
Table 3 Comparison of trajectory optimization results of 6R Bronte robot based on different algorithms
Fig.6 Comparison of normalized weighted iterative optimal values of trajectory optimization objectives of 6R Bronte robot based on different algorithms
Fig.7 Position‒time curve of each joint of 6R Bronte robot
Fig.8 Velocity‒time curve of each joint of 6R Bronte robot
Fig.9 Acceleration‒time curve of each joint of 6R Bronte robot
Fig.10 Jerk‒time curve of each joint of 6R Bronte robot
[1]   居鹤华,付荣.基于GA的时间最优机械臂轨迹规划算法[J].控制工程,2012,19(3):472-477. doi:10.3969/j.issn.1671-7848.2012.03.026
JU He-hua, FU Rong. Time-optimal trajectory planning algorithm based on GA for manipulator[J]. Control Engineering of China, 2012, 19(3): 472-477.
doi: 10.3969/j.issn.1671-7848.2012.03.026
[2]   HUANG J, HU P, WU K, et al. Optimal time-jerk trajectory planning for industrial robots[J]. Mechanism and Machine Theory, 2018, 121: 530-544. doi:10.1016/j.mechmachtheory.2017.11.006
doi: 10.1016/j.mechmachtheory.2017.11.006
[3]   ROUT A, DEEPAK B, BISWAL B B, et al. Optimal trajectory planning of industrial robot for improving positional accuracy[J]. Industrial Robot, 2021, 48(1): 71-83. doi:10.1108/IR-07-2019-0148
doi: 10.1108/IR-07-2019-0148
[4]   王会方,朱世强,吴文祥.基于INSGA-Ⅱ算法的机械手多目标轨迹规划[J].浙江大学学报(工学版),2012,46(4):622-628. doi:10.3785/j.issn.1008-973X.2012.04.008
WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-II based multi-objective trajectory planning for manipulators[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 622-628.
doi: 10.3785/j.issn.1008-973X.2012.04.008
[5]   SHI Z, PENG Y, WEI W. Optimal sizing of DGs and storage for microgrid with interruptible load using improved NSGA-II[C]//2014 IEEE Congress on Evolutionary Computation (CEC), Beijing: IEEE, 2014: 2108-2115. doi:10.1109/cec.2014.6900414
doi: 10.1109/cec.2014.6900414
[6]   YANG Xin-she, Suash DEB. Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, Dec. 9-11, 2009. doi:10.1109/NABIC.2009.5393690
doi: 10.1109/NABIC.2009.5393690
[7]   SAVSANI P, JHALA R L, SAVSANI V J. Comparative study of different metaheuristics for the trajectory planning of a robotic arm[J]. IEEE Systems Journal, 2014, 10(2): 697-708. doi:10.1109/JSYST.2014.2342292
doi: 10.1109/JSYST.2014.2342292
[8]   米根锁,李明.布谷鸟搜索算法在空间机械臂轨迹规划中的应用研究[J].机械科学与技术,2018,37(12):1805-1810.doi:10.13433/j.cnki.1003-8728.20180079
MI Gen-suo, LI Ming. Applying cuckoo search algorithm to path planning of space manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1805-1810.
doi: 10.13433/j.cnki.1003-8728.20180079
[9]   WANG W, TAO Q, CAO Y, et al. Robot time-optimal trajectory planning based on improved cuckoo search algorithm[J]. IEEE Access, 2020, 8: 86923-86933. doi:10.1109/access.2020.2992640
doi: 10.1109/access.2020.2992640
[10]   YANG Xin-she, Suash DEB. Cuckoo search: recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169-174. doi:10.1007/s00521-013-1367-1
doi: 10.1007/s00521-013-1367-1
[11]   单梁,强浩,李军,等.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. doi:10.3321/j.issn:1001-0920.2005.02.013
SHAN Liang, QIANG Hao, LI Jun, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179-182
doi: 10.3321/j.issn:1001-0920.2005.02.013
[12]   ASAFUDDOULA M, RAY T, SARKER R, et al. An adaptive constraint handling approach embedded MOEA/D[C]//2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Jun. 10-15, 2012. doi: 10.1109/CEC.2012.6252868
doi: 10.1109/CEC.2012.6252868
[13]   李小为,胡立坤,王琥.速度约束下PSO的六自由度机械臂时间最优轨迹规划[J].智能系统学报,2015,10(3):393-398. doi:10.3969/j.issn.1673-4785.201404035
LI Xiao-wei, HU Li-kun, WANG Hu. PSO-based time optimal trajectory planning for six degrees of freedom robot manipulators with speed constraints[J]. CAAI Transactions on Intelligent Systems, 2015, 10(3): 393-398.
doi: 10.3969/j.issn.1673-4785.201404035
[14]   李海虹,林贞国,杜娟,等.挖掘机自主挖掘分段可变阶多项式轨迹规划[J].农业机械学报,2016,47(4):319-325. doi:10.6041/j.issn.1000-1298.2016.04.042
LI Hai-hong, LIN Zhen-guo, DU Juan, et al. Piecewise polynomial with variable order in trajectory planning for autonomous mining[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 319-325.
doi: 10.6041/j.issn.1000-1298.2016.04.042
[1] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chin J Eng Design, 2023, 30(4): 503-511.
[2] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chin J Eng Design, 2022, 29(6): 695-704.
[3] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chin J Eng Design, 2022, 29(6): 739-747.
[4] Pei-cheng SHI,Xu CHEN,Ai-xi YANG,Liang ZHANG. Ackerman steering trajectory planning and position estimation of 4WID-4WIS intelligent vehicle[J]. Chin J Eng Design, 2022, 29(2): 123-132.
[5] WEI Wei, LIN Zai-sheng. Research on optimization design method of customized product based on RIR-MOO[J]. Chin J Eng Design, 2020, 27(5): 592-599.
[6] SU Fang, LUO Ru-nan, LIU Yan-ming, WANG Chen-sheng. Design and research on biaxial linkage feed system based on multi-objective optimization[J]. Chin J Eng Design, 2020, 27(4): 456-462.
[7] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chin J Eng Design, 2020, 27(2): 232-238.
[8] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chin J Eng Design, 2020, 27(1): 67-75.
[9] WANG Zhe, CHEN Yong, CAO Zhan, LI Guang-xin, ZUO Kou-cheng. Research on vibration and noise reduction of two-speed transmission of pure electric vehicle[J]. Chin J Eng Design, 2019, 26(3): 280-286.
[10] YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang. Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model[J]. Chin J Eng Design, 2018, 25(4): 426-433.
[11] XU Jian, MEI Jiang-ping, DUAN Xiao-bin, LUO Zhen-jun, CHEN Luo-gen. An algorithm for segment transition in continuous trajectory planning of industrial robot[J]. Chin J Eng Design, 2016, 23(6): 537-543.
[12] YANG Shao-yong, LEI Fei, CHEN Yuan. Structure optimization of a carbon fiber reinforced composite suspension control arm based on the lay up design features[J]. Chin J Eng Design, 2016, 23(6): 600-605,619.
[13] WU Si-min, MENG Wen-jun, LI Shu-jun, WANG Yao, XU Cheng-gong. Design and optimization of a novel magnetorheological brake with double coils placed on the side housing[J]. Chin J Eng Design, 2016, 23(5): 453-460.
[14] . Multi-objective optimization software development and application[J]. Chin J Eng Design, 2015, 22(3): 262-268.
[15] YANG Yin, GU Ji-Nan, GUO Lin. Trajectory planning and kinematics simulation of the 4-RUPaR high-speed handling parallel robot based on ADAMS[J]. Chin J Eng Design, 2013, 20(5): 375-382.