Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (6): 537-543    DOI: 10.3785/j.issn.1006-754X.2016.06.003
    
An algorithm for segment transition in continuous trajectory planning of industrial robot
XU Jian1, MEI Jiang-ping1, DUAN Xiao-bin1, LUO Zhen-jun2, CHEN Luo-gen2
1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300355, China;
2. Mechanical and Electrical Institute, Hangzhou Wahaha Group Co., Ltd., Hangzhou 310020, China
Download: HTML     PDF(784KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A new algorithm for obtaining concatenation curves between segments in operational space related to continuous trajectory planning of industrial robots is introduced, which is to improve motion speeds of industrial robots when they transit between segments. The main aim of the algorithm was to make full use of industrial robot, try to improve their speed and reduce the time needed in transition section with ensuring the precision in transition section and the physical constraints of industrial robot. And the computation procedure of the algorithm should be as simple as possible, so as to be easy for the online trajectory planning and improve the generality of the algorithm. The algorithm used the via-point as a reference to obtain two transition points according to the specified transition radius, and each transition point had a non-zero velocity. A novel finite sine series function was used to interpolate the trajectory between the transition points, while conventional linear or circular trajectory planning algorithms with boundary points satisfying velocity and acceleration constraints could be employed to interpolate the trajectory between transition points and other points. The effect of the algorithm was verified by simulation in MATLAB and experiment in a 2-DOFs high speed parallel manipulator. The algorithm can realize the online trajectory planning of typical robot paths. Its trajectory is fixed even when path velocity is modified, and its computation procedure is relatively simple, and hence has much potential in many applications.



Key wordscontinuous trajectory planning      operational space      industrial robot      path transition     
Received: 03 March 2016      Published: 28 December 2016
CLC:  TP242.2  
Cite this article:

XU Jian, MEI Jiang-ping, DUAN Xiao-bin, LUO Zhen-jun, CHEN Luo-gen. An algorithm for segment transition in continuous trajectory planning of industrial robot. Chinese Journal of Engineering Design, 2016, 23(6): 537-543.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.06.003     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I6/537


一种工业机器人连续轨迹规划过渡算法

提出一种用于工业机器人操作空间连续轨迹规划的平滑曲线过渡算法,以提高工业机器人在连续轨迹过渡时的运动速度.该算法的主要目的是在保证连续轨迹过渡精度和工业机器人物理约束的条件下充分发挥工业机器人的能力,尽量提高过渡区域的速度,减少过渡所需时间,同时尽可能地使计算过程简便,以便用于在线规划,提高算法的通用性.该算法以给定速度为零的路径衔接点为基准,根据过渡半径参数得到2个速度不为零的过渡节点,在过渡节点之间采用一种有限项的正弦级数进行曲线拟合.而在非过渡区域只需采取经典的起止速度及加速度满足约束值的直线轨迹规划算法或圆弧轨迹规划算法.通过MATLAB仿真和一种两自由度高速并联机械手的实验验证了该算法的效果.该算法可以实现典型路径的在线轨迹规划,且轨迹通常不随速度参数的更改而变化,计算过程简便,故具有较大的应用价值和发展空间.


关键词: 连续轨迹规划,  操作空间,  工业机器人,  路径过渡 

[1] FU K S, GONZALEZ R C, LEE C S G. Robotics:control, sensing, vision, and intelligence[M]. Blacklick, Ohio:McGraw-Hill Book Company, 1987:149-200.
[2] 刘承立,栾楠. 关节空间样条的连续点位运动规划算法[J]. 机械与电子,2014(8):74-78. LIU Cheng-li, LUAN Nan. Continuous point to point motion planning algorithm based on splines in joint space[J]. Machinery & Electronics, 2014(8):74-78.
[3] 张斌. 基于多约束的机器人关节空间轨迹规划[J]. 机械工程学报,2011,47(21):1-6. ZHANG Bin. Joint-space trajectory planning for robots under multiple constraint[J]. Journal of Mechanical Engineering, 2011, 47(21):1-6.
[4] SUH S-H, KANG S-K. Theory and design of CNC systems[M]. London:Springer-Verlag, 2008:107-156.
[5] VOLPE R. Task space angular velocity blending for real-time trajectory generation:US 5602968[P]. 1997-02-11.
[6] LLOYD J, HAYWARD V. Real-time trajectory generation using blend functions[C]//Proceedings of IEEE International Conference on Robotics and Automation. Sacramento, CA, Apr.9-11, 1991:784-789.
[7] USTYAN T, JÖNSSON V. Implementation of a generic virtual robot controller[D]. Sweden:Chalmers University of Technology, Department of Signals and Systems, Division of Automatic Control, Automation and Mechatronics, 2011:8-31.
[8] KOICHI Funaya. Method of and apparatus for robot tip trajectory control:US 5740327A[P]. 1998-04-14.
[9] SICILIANO B, SCIAVICCO L, VILLANI L. Robotics:modelling, planning and control[M]. 3th ed. London:Springer-Verlag, 2009:161-190.
[10] 林仕高,刘晓麟,欧元贤. 机械手笛卡尔空间轨迹规划研究[J]. 机械设计与制造,2013(3):49-52. LIN Shi-gao, LIU Xiao-lin, OU Yuan-xian. The study of trajectory planning of manipulators in Cartesian space[J]. Machinery Design & Manufacture, 2013(3):49-52.
[11] 王允航. 连续轨迹的S型速度规划的研究[D].深圳:哈尔滨工业大学深圳研究生院,2010:5-46. WANG Yun-hang. Research on S-shaped continuous trajectory planning[D]. Shenzhen:Harbin Institute of Technology, Graduate School at Shenzhen, 2010:5-46.
[12] SONJA Macfarlane, ELIZABETH A Croft. Jerk-bounded manipulator trajectory planning:design for real-time applications[J]. IEEE Transactions on Robotics and Automation, 2003, 19(1):42-52.
[13] LUIGI Biagiotti, CLAUDIO Melchiorri. Trajectory planning for automatic machines and robots[M]. Berlin:Springer-Verlag, 2008:341-414.
[14] JEON J W, HA Y Y. A generalized approach for the acceleration and deceleration of industrial robotics and CNC machine tools[J]. IEEE Transaction on Industrial Electronics, 2000, 47(1):133-139.
[15] CUI J, CHU Z Y. An improved approach for the acceleration and deceleration of industrial robots and CNC machine tools[C]//Proceedings of the 2005 IEEE International Conference on Industrial Technology. Hong Kong, Dec. 14-17, 2005:1269-1273.
[16] JEON J W. Efficient acceleration and deceleration technique for short distance movement in industrial robots and CNC machine tools[J]. Electronics Letters, 2000,36(8):766-768.
[17] NG Y K, XIE Y, WANG C, et al. Development of a new velocity profile generation for improvement of CNC Machining Efficiency[C]//Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation. Takamatsu, Aug. 5-8, 2008:313-318.
[18] HUANG Tian, LI Zhan-xian, LI Meng, et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J]. Journal of Mechanical Design, 2004, 126(3):449-455.
[19] 辰星(天津)自动化设备有限公司. D2-350技术参数[EB/OL]. (2015-09-03)[2016-03-27]. http://www.cxrobot.com/gsby/1203_30.html. Chenxing (Tianjin) Automation Equipment Co., Ltd.. The technical parameters of D2-350[EB/OL]. (2015-09-03)[2016-03-27]. http://www.cxrobot.com/gsby/1203_30.html.

[1] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.