Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 340-347    DOI: 10.3785/j.issn.1006-754X.2024.04.301
Mechanical Optimization Design     
Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm
Xiaobo YU1,2(),Sujiao CHEN1,2(),Yonghua ZHANG1,2,Binjun MA1,2
1.Driveline Research and Development Department, Liugong Liuzhou Driveline Co. , Ltd. , Liuzhou 545007, China
2.Guangxi Liugong Machinery Co. , Ltd. , Liuzhou 545007, China
Download: HTML     PDF(4250KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The centralized transmission system has a compact layout and close component spacing, which puts forward higher requirements for its NVH (noise, vibration, harshness) control. Taking the centralized transmission system of an engineering machinery as the research object, firstly, the vibration and noise test was carried out, and the principle of gear micro-modification was analyzed. Secondly, the mutual coupling of system modal resonance and gear meshing was considered, the finite element model of the transmission system was established, and the simulation results showed that the simulation results of gear pair contact patches and modes were consistent with the test results, which verified the feasibility of the modeling method. Then, based on genetic algorithm, the gear micro-modification parameters were solved, the optimal design of the gear micro-modification was realized, and the resonance of the system was avoided by modal optimization. Finally, the experimental verification was carried out, and the results showed that the noise of the transmission system sample was reduced to 95.2 dB after the gear modification, which was 4.8 dB lower than that before modification. The vibration and noise of the transmission system can be reduced by using micro-modification and modal optimization method based on genetic algorithm, which provides a reference for NVH control of the centralized transmission system.



Key wordstransmission system      genetic algorithm      micro-modification      modal analysis      transmission error     
Received: 10 March 2024      Published: 27 June 2024
CLC:  TH 113  
Corresponding Authors: Sujiao CHEN     E-mail: yuxiaobo@liugong.com;chsj@liugong.com
Cite this article:

Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.301     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/340


基于遗传算法的集中式传动系统齿轮修形及模态优化研究

集中式传动系统布局紧凑,部件间距小,因此对其NVH(noise, vibration, harshness,噪声、振动与声振粗糙度)控制提出了更高要求。以某工程机械的集中式传动系统为研究对象,首先,进行了其振动噪声测试,并分析了齿轮微观修形原理;其次,考虑了系统模态共振与齿轮啮合的相互耦合,建立了该传动系统的有限元模型并进行仿真,结果显示,齿轮副接触斑点和模态的仿真结果与测试结果一致,验证了建模方法的可行性;接着,基于遗传算法求解了齿轮微观修形参数,实现了齿轮微观修形的最优设计,并通过模态优化来避免系统共振;最后,进行实验验证,结果表明,齿轮修形后传动系统的噪声降低至95.2 dB,比修形前下降了4.8 dB。采用基于遗传算法的齿轮微观修形和模态优化方法可以降低传动系统的振动噪声,这为集中式传动系统的NVH控制提供了一定参考。


关键词: 传动系统,  遗传算法,  微观修形,  模态分析,  传递误差 
Fig.1 Centralized transmission system of an engineering machinery
Fig.2 Vibration and noise test site of centralized transmission system
Fig.3 Colormap analysis results of vibration and noise test data of centralized transmission system
Fig.4 Principle of gear micro-modification
Fig.5 Model of centralized transmission system
Fig.6 Comparison of contact patches of transmission gear pairs obtained by testing and simulating
Fig.7 The first mode of centralized transmission system before optimization
Fig.8 The first mode of centralized transmission system after optimization
优化参数初始值目标值权重系数
传递误差峰峰值/μm3.2400.988
齿面单位长度法向载荷/(N/mm)286175.50.012
Table 1 Target parameters for the first-stage driving gear
Fig.9 Optimization results of modification scheme of first-stage driving gear
Fig.10 Relation between peak-to-peak value of transmission error and normal load per unit length of tooth surface
Fig.11 Relationship between gear micro-modification parameters and peak-to-peak value of transmission error
修形参数一级主动齿轮二级主动齿轮
螺旋线鼓形量3.586.42
螺旋线斜度30.4319.70
齿顶修缘量6.687.95
齿廓鼓形量4.595.31
齿廓斜度-6.14-10.22
Table 2 Micro-modification parameters of driving gear
Fig.12 Comparison of meshing line offset of gear pairs before and after modification
Fig.13 Normal load per unit length of tooth surface after modification
Fig.14 Comparison of noise of centralized transmission system sample before and after modification
Fig.15 Modal analysis result of centralized transmission system sample before and after modification
[1]   朱才朝,陆波,宋朝省. 大功率船用齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2009,45(9):31-35. doi:10.3901/JME.2009.09.031
ZHU C C, LU B, SONG C S. Study of coupled nonlinear dynamic characteristics of high-power marine gearbox systems[J]. Journal of Mechanical Engineering, 2009, 45(9): 31-35.
doi: 10.3901/JME.2009.09.031
[2]   何渠,贺敬良,何畅然,等. 弧齿锥齿轮传动仿真分析及修形优化[J].北京信息科技大学学报(自然科学版),2014,29(6):37-40.
HE Q, HE J L, HE C R, et al. Simulation analysis and modification optimization of bevel gear transmission with curved teeth[J]. Journal of Beijing University of Information Science and Technology (Natural Science Edition), 2014, 29(6): 37-40.
[3]   邢宏福,杨朝会,于楠,等. 基于Romax的斜齿圆柱齿轮的微观参数优化[J].机械传动,2021,45(6):85-89,138. doi:10.16578/j.issn.1004.2539.2021.06.013
XING H F, YANG C H, YU N, et al. Optimization of micro parameters of helical cylindrical gears based on Romax[J]. Mechanical Transmission, 2021, 45(6): 85-89, 138.
doi: 10.16578/j.issn.1004.2539.2021.06.013
[4]   鄢万斌,余晓波,卢再毅,等.变速器振动噪声分析及轮齿修形优化[J].液压与气动,2023(7):139-146. doi:10.11832/j.issn.1000-4858.2023.07.017
YAN W B, YU X B, LU Z Y, et al. Transmission vibration and noise analysis and gear tooth modification optimization [J]. Chinese Hydraulics & Pneumatics, 2023(7): 139-146.
doi: 10.11832/j.issn.1000-4858.2023.07.017
[5]   CARBONELLI A, RIGAUD E, PERRET L J. Vibro-acoustic analysis of geared systems: predicting and controlling the whining noise[C]//Tomotive NVH Technology. Berlin: Springer International Publishing, 2016: 63-79.
[6]   吕建锋,聂晓根,盛裕民,等.基于渐开线齿轮轮廓修形的疲劳寿命分析[J].机械制造与自动化,2024(1):24-28.
LÜ J F, NIE X G, SHENG Y M, et al. Fatigue life analysis based on involute gear profile modification[J]. Machine Building & Automation, 2024(1): 24-28.
[7]   王文平,项昌乐,刘辉. 基于 FEM/BEM 变速器箱体辐射噪声的研究[J].噪声与振动控制,2007(5):107-111. doi:10.3969/j.issn.1006-1355.2007.05.030
WANG W P, XING C L, LIU H. Research on radiated noise of transmission box based on FEM/BEM[J]. Noise and Vibration Control, 2007(5): 107-111.
doi: 10.3969/j.issn.1006-1355.2007.05.030
[8]   IAN H, JIA S X, JIANDE W. The dynamic modeling of a spur in mesh including friction and a crack[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 831-853.
[9]   张波,连婷,沈娴.改进灰狼优化算法的减速器齿轮修形方法[J].煤炭技术,2023(11):217-220. doi:10.1109/ifeea60725.2023.10429617
ZHANG B, LIAN T, SHEN X. Reduction gear modification method with improved grey wolf optimization algorithm[J]. Coal Technology, 2023(11): 217-220.
doi: 10.1109/ifeea60725.2023.10429617
[10]   王振博,郑鹏,刘逸飞.基于神经网络优化的正交试验内齿轮齿面偏载矫正研究[J].机械传动,2023(8):16-23.
WANG Z B, ZHENG P, LIU Y F. Research on tooth surface offset load correction of internal gear in orthogonal test based on neural network optimization[J]. Mechanical Transmission, 2023(8): 16-23.
[11]   杨霞,王忠桃. 基于改进PSO算法的掘进机减速器齿轮修形参数优化[J].煤炭技术,2023(2):215-217.
YANG X, WANG Z T. Optimization of gear modification parameters of roadheader reducer based on improved PSO algorithm[J]. Coal Technology, 2023(2): 215-217.
[12]   刘欣荣,汪中厚,久保爱三.基于混沌蚁群优化算法的齿轮传动误差研究[J].系统仿真学报,2019(9):1942-1949.
LIU X R, WANG Z H, AIZO K B. Research on gear transmission error based on chaotic ant colony optimization algorithm[J]. Journal of System Simulation, 2019(9): 1942-1949.
[13]   杨丽,佟操,陈闯,等. 基于Kriging模型和遗传算法的齿轮修形减振优化[J].航空动力学报,2017(6):1412-1418.
YANG L, TONG C, CHEN C, et al. Optimization of gear modification and vibration reduction based on Kriging model and genetic algorithm[J]. Journal of Aerodynamics, 2017(6): 1412-1418.
[14]   杜静,魏静,秦朝烨. Romax Designer入门详解与实例[M].北京:机械工业出版社,2012.
DU J, WEI J, QIN Z Y. Romax Designer introductory details and examples[M]. Beijing: China Machine Press, 2012.
[15]   赫修智. 齿轮箱关键部件故障振动特征提取与分析[D].吉林:吉林大学,2021.
HE X Z. Extraction and analysis of fault vibration features of key components of gearboxes[D]. Jilin: Jilin University, 2021.
[16]   杨红波,史文库,陈志勇,等. 基于某二级减速齿轮系统的齿面修形优化[J].吉林大学学报(工学版),2022,52(7):1541-1551.
YANG H B, SHI W K, CHEN Z Y, et al. Optimization of tooth surface modification based on a secondary reduction gear system[J]. Journal of Jilin University (Engineering Edition), 2022, 52(7): 1541-1551.
[1] Heng CUI,Zongfang MA,Lin SONG,Chao LIU,Yixuan HAN. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning[J]. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.
[2] Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
[3] Kang XIAO,Chu ZHANG,Huimin DONG,Fanhai MAO. Semi-analytical contact model and transmission accuracy analysis of involute cylindrical gear considering elastic error[J]. Chinese Journal of Engineering Design, 2024, 31(1): 91-97.
[4] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[5] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[6] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[7] Xin MI,Hong LI,Yan-qing GUO,Hong-wei GAO,Hao-nan WANG,Yi-fan NING. Parameter optimization of single plunger pump check valve based on linear regression[J]. Chinese Journal of Engineering Design, 2022, 29(6): 705-712.
[8] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[9] XIE Miao, ZHANG Bao-guo, WANG Peng-fei, LI Zheng. Research on active excitation cutting performance of roadheader based on similarity theory[J]. Chinese Journal of Engineering Design, 2021, 28(5): 576-584.
[10] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[11] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[12] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[13] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[14] WANG Zhe, CHEN Yong, CAO Zhan, LI Guang-xin, ZUO Kou-cheng. Research on vibration and noise reduction of two-speed transmission of pure electric vehicle[J]. Chinese Journal of Engineering Design, 2019, 26(3): 280-286.
[15] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.