Mechanical Optimization Design |
|
|
|
|
Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm |
Xiaobo YU1,2( ),Sujiao CHEN1,2( ),Yonghua ZHANG1,2,Binjun MA1,2 |
1.Driveline Research and Development Department, Liugong Liuzhou Driveline Co. , Ltd. , Liuzhou 545007, China 2.Guangxi Liugong Machinery Co. , Ltd. , Liuzhou 545007, China |
|
|
Abstract The centralized transmission system has a compact layout and close component spacing, which puts forward higher requirements for its NVH (noise, vibration, harshness) control. Taking the centralized transmission system of an engineering machinery as the research object, firstly, the vibration and noise test was carried out, and the principle of gear micro-modification was analyzed. Secondly, the mutual coupling of system modal resonance and gear meshing was considered, the finite element model of the transmission system was established, and the simulation results showed that the simulation results of gear pair contact patches and modes were consistent with the test results, which verified the feasibility of the modeling method. Then, based on genetic algorithm, the gear micro-modification parameters were solved, the optimal design of the gear micro-modification was realized, and the resonance of the system was avoided by modal optimization. Finally, the experimental verification was carried out, and the results showed that the noise of the transmission system sample was reduced to 95.2 dB after the gear modification, which was 4.8 dB lower than that before modification. The vibration and noise of the transmission system can be reduced by using micro-modification and modal optimization method based on genetic algorithm, which provides a reference for NVH control of the centralized transmission system.
|
Received: 10 March 2024
Published: 27 June 2024
|
|
Corresponding Authors:
Sujiao CHEN
E-mail: yuxiaobo@liugong.com;chsj@liugong.com
|
基于遗传算法的集中式传动系统齿轮修形及模态优化研究
集中式传动系统布局紧凑,部件间距小,因此对其NVH(noise, vibration, harshness,噪声、振动与声振粗糙度)控制提出了更高要求。以某工程机械的集中式传动系统为研究对象,首先,进行了其振动噪声测试,并分析了齿轮微观修形原理;其次,考虑了系统模态共振与齿轮啮合的相互耦合,建立了该传动系统的有限元模型并进行仿真,结果显示,齿轮副接触斑点和模态的仿真结果与测试结果一致,验证了建模方法的可行性;接着,基于遗传算法求解了齿轮微观修形参数,实现了齿轮微观修形的最优设计,并通过模态优化来避免系统共振;最后,进行实验验证,结果表明,齿轮修形后传动系统的噪声降低至95.2 dB,比修形前下降了4.8 dB。采用基于遗传算法的齿轮微观修形和模态优化方法可以降低传动系统的振动噪声,这为集中式传动系统的NVH控制提供了一定参考。
关键词:
传动系统,
遗传算法,
微观修形,
模态分析,
传递误差
|
|
[1] |
朱才朝,陆波,宋朝省. 大功率船用齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2009,45(9):31-35. doi:10.3901/JME.2009.09.031 ZHU C C, LU B, SONG C S. Study of coupled nonlinear dynamic characteristics of high-power marine gearbox systems[J]. Journal of Mechanical Engineering, 2009, 45(9): 31-35.
doi: 10.3901/JME.2009.09.031
|
|
|
[2] |
何渠,贺敬良,何畅然,等. 弧齿锥齿轮传动仿真分析及修形优化[J].北京信息科技大学学报(自然科学版),2014,29(6):37-40. HE Q, HE J L, HE C R, et al. Simulation analysis and modification optimization of bevel gear transmission with curved teeth[J]. Journal of Beijing University of Information Science and Technology (Natural Science Edition), 2014, 29(6): 37-40.
|
|
|
[3] |
邢宏福,杨朝会,于楠,等. 基于Romax的斜齿圆柱齿轮的微观参数优化[J].机械传动,2021,45(6):85-89,138. doi:10.16578/j.issn.1004.2539.2021.06.013 XING H F, YANG C H, YU N, et al. Optimization of micro parameters of helical cylindrical gears based on Romax[J]. Mechanical Transmission, 2021, 45(6): 85-89, 138.
doi: 10.16578/j.issn.1004.2539.2021.06.013
|
|
|
[4] |
鄢万斌,余晓波,卢再毅,等.变速器振动噪声分析及轮齿修形优化[J].液压与气动,2023(7):139-146. doi:10.11832/j.issn.1000-4858.2023.07.017 YAN W B, YU X B, LU Z Y, et al. Transmission vibration and noise analysis and gear tooth modification optimization [J]. Chinese Hydraulics & Pneumatics, 2023(7): 139-146.
doi: 10.11832/j.issn.1000-4858.2023.07.017
|
|
|
[5] |
CARBONELLI A, RIGAUD E, PERRET L J. Vibro-acoustic analysis of geared systems: predicting and controlling the whining noise[C]//Tomotive NVH Technology. Berlin: Springer International Publishing, 2016: 63-79.
|
|
|
[6] |
吕建锋,聂晓根,盛裕民,等.基于渐开线齿轮轮廓修形的疲劳寿命分析[J].机械制造与自动化,2024(1):24-28. LÜ J F, NIE X G, SHENG Y M, et al. Fatigue life analysis based on involute gear profile modification[J]. Machine Building & Automation, 2024(1): 24-28.
|
|
|
[7] |
王文平,项昌乐,刘辉. 基于 FEM/BEM 变速器箱体辐射噪声的研究[J].噪声与振动控制,2007(5):107-111. doi:10.3969/j.issn.1006-1355.2007.05.030 WANG W P, XING C L, LIU H. Research on radiated noise of transmission box based on FEM/BEM[J]. Noise and Vibration Control, 2007(5): 107-111.
doi: 10.3969/j.issn.1006-1355.2007.05.030
|
|
|
[8] |
IAN H, JIA S X, JIANDE W. The dynamic modeling of a spur in mesh including friction and a crack[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 831-853.
|
|
|
[9] |
张波,连婷,沈娴.改进灰狼优化算法的减速器齿轮修形方法[J].煤炭技术,2023(11):217-220. doi:10.1109/ifeea60725.2023.10429617 ZHANG B, LIAN T, SHEN X. Reduction gear modification method with improved grey wolf optimization algorithm[J]. Coal Technology, 2023(11): 217-220.
doi: 10.1109/ifeea60725.2023.10429617
|
|
|
[10] |
王振博,郑鹏,刘逸飞.基于神经网络优化的正交试验内齿轮齿面偏载矫正研究[J].机械传动,2023(8):16-23. WANG Z B, ZHENG P, LIU Y F. Research on tooth surface offset load correction of internal gear in orthogonal test based on neural network optimization[J]. Mechanical Transmission, 2023(8): 16-23.
|
|
|
[11] |
杨霞,王忠桃. 基于改进PSO算法的掘进机减速器齿轮修形参数优化[J].煤炭技术,2023(2):215-217. YANG X, WANG Z T. Optimization of gear modification parameters of roadheader reducer based on improved PSO algorithm[J]. Coal Technology, 2023(2): 215-217.
|
|
|
[12] |
刘欣荣,汪中厚,久保爱三.基于混沌蚁群优化算法的齿轮传动误差研究[J].系统仿真学报,2019(9):1942-1949. LIU X R, WANG Z H, AIZO K B. Research on gear transmission error based on chaotic ant colony optimization algorithm[J]. Journal of System Simulation, 2019(9): 1942-1949.
|
|
|
[13] |
杨丽,佟操,陈闯,等. 基于Kriging模型和遗传算法的齿轮修形减振优化[J].航空动力学报,2017(6):1412-1418. YANG L, TONG C, CHEN C, et al. Optimization of gear modification and vibration reduction based on Kriging model and genetic algorithm[J]. Journal of Aerodynamics, 2017(6): 1412-1418.
|
|
|
[14] |
杜静,魏静,秦朝烨. Romax Designer入门详解与实例[M].北京:机械工业出版社,2012. DU J, WEI J, QIN Z Y. Romax Designer introductory details and examples[M]. Beijing: China Machine Press, 2012.
|
|
|
[15] |
赫修智. 齿轮箱关键部件故障振动特征提取与分析[D].吉林:吉林大学,2021. HE X Z. Extraction and analysis of fault vibration features of key components of gearboxes[D]. Jilin: Jilin University, 2021.
|
|
|
[16] |
杨红波,史文库,陈志勇,等. 基于某二级减速齿轮系统的齿面修形优化[J].吉林大学学报(工学版),2022,52(7):1541-1551. YANG H B, SHI W K, CHEN Z Y, et al. Optimization of tooth surface modification based on a secondary reduction gear system[J]. Journal of Jilin University (Engineering Edition), 2022, 52(7): 1541-1551.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|