Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID
Binghui JI1(),Jian MAO1,2(),Bo QIAN1
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China 2.Sichuan Research Institute, Shanghai Jiaotong University, Chengdu 610213, China
Fused deposition modeling (FDM) 3D printing requires the print nozzle to be heated the desired temperature of the material before printing begins. Due to the low printing efficiency of the single nozzle FDM 3D printer, and the large lag and poor stability of its heating system, the whole forming process is time-consuming and wasteful of resources, and the quality of the formed parts is not high. In order to solve the above problems, a temperature control method based on genetic algorithm-fuzzy PID (proportional-integral-derivative) was proposed to control the heating method of dual-nozzle FDM 3D printer, which combined the differences in physical and chemical properties of printing materials. The MATLAB/Simulink simulation model of the temperature control system was established to verify the reliability of the proposed control method. The simulation and experimental results showed that compared with the traditional PID control and fuzzy PID control, the response time of the genetic algorithm-fuzzy PID control was shortened by 36.03% and 32.45%, and the adjustment time was shortened by 28.06% and 20.99%, which had the advantages of fast response, short adjustment time, small overshoot and stable control effect. The research results can provide reference for dual-nozzle FDM 3D printing of composite materials.
Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
Fig.1 Test model of print nozzle temperature control system
变量
模糊论域
[-6, 6]
ec
[-6, 6]
[-6, 6]
[-6, 6]
[-6, 6]
Table 1Fuzzy domain of each variable in fuzzy PID controller
Fig.2 Membership function of fuzzy input variable
Fig.3 Membership function of fuzzy output variable
e
ec
NB
NM
NS
Z
PS
PM
PB
NB
Z/NB/PS
Z/NB/NS
NM/NM/NB
NM/NM/NB
NM/NS/NB
NB/Z/NM
NB/Z/PS
NM
PS/NB/PS
Z/NB/NS
NS/NM/NB
NM/NS/NM
NM/NS/NM
NM/Z/NS
NB/Z/Z
NS
PS/NB/Z
PS/NM/NS
Z/NS/NM
NS/Z/NM
NS/Z/NS
NM/PS/NS
NM/PS/Z
Z
PM/NM/Z
PM/NM/NS
PS/NS/NS
Z/Z/NS
NS/PS/NS
NM/PM/NS
NM/PM/Z
PS
PM/NM/Z
PM/NS/Z
PM/Z/NS
PS/PS/Z
Z/PS/Z
NS/PM/Z
NS/PB/Z
PM
PB/Z/PB
PB/Z/PS
PMZ/PS
PS/PS/PS
PS/PM/PS
Z/PB/PS
NS/PB/PB
PB
PB/Z/PB
PB/Z/PM
PM/PS/PM
PM/PM/PM
PS/PM/PS
Z/PB/PS
Z/PB/PB
Table 2Fuzzy control rules for ,,
参数符号
含义
说明
上升时间
从开始升温到第1次达到目标温度所需的时间,初始误差为90%
调节时间
从开始升温到误差稳定在3以内所需的时间
最大超调量
目标温度的最大超调量
稳态误差
调节后的平均误差
Table 3Symbol and meaning of performance indicator for fuzzy PID controller
Fig.4 Optimization flow of fuzzy PID control parameters based on genetic algorithm
Fig.5 Simulation models of temperature controller based on different algorithms
Fig.6 Comparison of control effect of three temperature controllers
控制器
传统PID
199.21
308.29
24.57
0.51
模糊PID
188.66
280.71
19.15
0.33
遗传算法-模糊PID
127.44
221.78
10.89
0.04
Table 4Comparison of performance indicator of three temperature controllers
Fig.7 Comparison of control effect of three temperature controllers after adding disturbance
控制器
tset/s
传统PID
287.63
模糊PID
253.16
遗传算法-模糊PID
201.24
Table 5Comparison of adjustment time for three temperature controllers after adding disturbance
Fig.8 Dual-nozzle FDM 3D printer
Fig.9 Circular-table formed part
Fig.10 Temperature rise curve of print nozzle 1 (heating up to 230 ℃)
Fig.11 Temperature rise curve of print nozzle 2 (heating up to 280 ℃)
Fig.12 Aircraft fork component formed part
[1]
唐通鸣,张政,邓佳文,等.基于FDM的3D打印技术研究现状与发展趋势[J].化工新型材料,2015,43(6):228-230,234. TANG T M, ZHANG Z, DENG J W, et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43(6): 228-230, 234.
[2]
KIM S, SEONG H, HER Y, et al. A study of the development and improvement of fashion products using a FDM type 3D printer[J]. Fashion and Textiles, 2019, 6: 9(1)-9(24).
[3]
徐佳.大型FDM双喷头3D打印机设计及工艺参数研究[D].秦皇岛:燕山大学,2016:1-37. XU J. Large double nozzle FDM 3D printer design and process parameters study[D]. Qinhuangdao: Yanshan University, 2016: 1-37.
[4]
李晓桐.FDM式3D打印机控制系统设计及工艺参数优化[D].哈尔滨:哈尔滨理工大学,2021:1-39. LI X T. Control system design of FDM 3D printer and process parameter optimization[D]. Harbin: Harbin University of Science and Technology, 2021: 1-39.
[5]
ALTAN A, HACIOĞLU R. The algorithm development and implementation for 3D printers based on adaptive PID controller[J]. Journal of Polytechnic, 2018, 21(3): 559-564.
[6]
LIU Z, WANG G, HUO Y, et al. Research on precise control of 3D print nozzle temperature in PEEK material[J]. AIP Conference Proceedings, 2017, 1890(1): 040076.
[7]
LIAO H H. Simulations research on Smith predictive adaptive fuzzy-PID compound controller in the temperature control system of microchip level PCR instrument[J]. Applied Mechanics and Materials, 2013, 373-375: 1324-1331.
[8]
张金立.3D打印机智能温控系统及路径规划算法的研究[D].上海:上海工程技术大学,2020:35-42. ZHANG J L. Research on intelligent temperature control system and path planning algorithm of 3D printer[D]. Shanghai: Shanghai University of Engineering Science, 2020: 35-42.
[9]
赵立柱,苏东海,左伟,等.基于粒子群模糊PID控制的风机盘车液压缸同步控制系统[J].机电工程,2022,39(7):961-966. doi:10.3969/j.issn.1001-4551.2022.07.013 ZHAO L Z, SU D H, ZUO W, et al. Synchronous control system of hydraulic cylinder of fan coil car controlled by particle swarm fuzzy PID[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(7): 961-966.
doi: 10.3969/j.issn.1001-4551.2022.07.013
[10]
刘艺炜.皮肤3D打印三维移动平台搭建与温度控制系统设计[D].太原:太原理工大学,2021:21-32. LIU Y W. Design of 3D mobile platform for skin 3D printing and temperature control system[D]. Taiyuan: Taiyuan University of Technology, 2021: 21-32.
[11]
周婧,高红飞,卢林,等.变论域模糊PID控制微流挤出型3D打印机的挤压力研究[J].工程设计学报,2022,29(5):572-578. doi:10.3785/j.issn.1006-754X.2022.00.075 ZHOU J, GAO H F, LU L, et al. Research on extrusion force of micro-flow extrusion 3D printer controlled by variable universe fuzzy PID[J]. Chinese Journal of Engineering Design, 2022, 29(5): 572-578.
doi: 10.3785/j.issn.1006-754X.2022.00.075
[12]
曲兴田,王学旭,孙慧超,等.熔融沉积成形技术3D打印机加热系统的模糊自适应PID控制[J].吉林大学学报(工学版),2020,50(1):77-83. QU X T, WANG X X, SUN H C, et al. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 77-83.
[13]
王自立.电动汽车电机驱动控制系统研究[D].南宁:广西大学,2020:18-26. WANG Z L. Research on electric vehicle motor drive control system[D]. Nanning: Guangxi University, 2020: 18-26.
[14]
张宝峰,张燿,朱均超,等.基于模糊PID的高精度温度控制系统[J].传感技术学报,2019,32(9):1425-1429. doi:10.3969/j.issn.1004-1699.2019.09.022 ZHANG B F, ZHANG Y, ZHU J C, et al. High precision temperature control system based on fuzzy PID[J]. Chinese Journal of Sensors and Actuators, 2019, 32(9): 1425-1429.
doi: 10.3969/j.issn.1004-1699.2019.09.022
[15]
樊宁.面向熔融混合材料3D打印的过程控制系统设计与实现[D].南京:南京师范大学,2021:48-61. FAN N. Design and implementation of process control system for 3D printing of fused mixed materials[D]. Nanjing: Nanjing Normal University, 2021: 48-61.
[16]
SAHOO B P, PANDA S. Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control[J]. Sustainable Energy, Grids and Networks, 2018, 16: 278-299.
[17]
GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[M]. Boston: Addison-Wesley Longman Publishing Co., Inc., 1989: 1-191.
[18]
王婷婷,王宏志,刘清雪,等.遗传算法优化的无刷直流电机模糊PID控制器设计[J].吉林大学学报(理学版),2020,58(6):1421-1428. WANG T T, WANG H Z, LIU Q X, et al. Design of fuzzy PID controller for brushless DC motor optimized by GA[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1421-1428.
[19]
孙嘉梁,符晓.遗传算法优化的移相全桥变换器模糊PID控制[J].测控技术,2022,41(5):113-118. SUN J L, FU X. Fuzzy PID control of phase shift full-bridge converter optimized by genetic algorithm[J]. Measurement & Control Technology, 2022, 41(5): 113-118.
[20]
CHEN J, LU Q, BAI J, et al. A temperature control method for microaccelerometer chips based on genetic algorithm and fuzzy PID control[J]. Micromachines, 2021, 12(12): 1511-1524.
[21]
刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011:288-296. LIU J K. MATLAB simulation of advanced PID control[M]. 3rd ed. Beijing: Electronic Industry Press, 2011: 288-296.