1.State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China 2.College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
In extremely harsh working environments such as strong impacts, intense radiation and extremely high temperature, the fault modes of mechanical equipment are complex and varied, and it is very difficult to obtain sufficient and effective fault data, even difficult to achieve, so that the accuracy of fault diagnosis is limited, and subsequent maintenance and repair programs are difficult to be effectively developed.To solve this problem, a data enhancement algorithm for multi-discriminator auxiliary classifier generative adversarial network was proposed. By setting up 3 discriminators, 1 generator and adding independent classifier, a new auxiliary classifier generative adversarial network model was constructed. Aiming at the instability issue in the model's training, the Wasserstein distance was introduced to construct a new loss function, and the unilateral soft constraint regularization term with more stability was used to replace the original L2 gradient penalty term to solve the problem of model collapse. Building on this, an efficient channel attention mechanism was adopted to further improve the model's feature extraction capability. The proposed model was applied to extend the fault data set of mechanical equipment to assist the training of deep learning intelligent diagnosis model. Multiple fault data set expansion experiments showed that compared with the existing model, the new model could generate higher quality data, and the accuracy of fault diagnosis was further improved, so it had high application value.
Zihan YE,Zhonghua WANG,Chao JIANG,Xin Lü,Zhe ZHANG. Research on fault diagnosis method based on multi-discriminator auxiliary classifier generative adversarial network. Chinese Journal of Engineering Design, 2024, 31(2): 137-150.
Table 2Data labels and their fault types of experiment 1
Fig.3 Gray scale of partial fault data in experiment 1
Fig.4 Samples generated by different models on CWRU bearing fault data set
模型
类别
0
1
2
3
4
5
6
7
ACGAN
532.10
532.11
532.10
532.11
532.01
532.10
532.11
532.11
ACWGAN-GP
179.08
326.34
488.76
171.87
236.83
199.66
220.80
532.00
MDACGAN
34.31
79.47
220.25
62.28
68.20
82.71
88.68
147.58
Table 3DFI values between real samples and generated samples of CWRU bearing fault data set
模型
类别
0
1
2
3
4
5
6
7
ACGAN
4.330 5
4.873 7
4.661 9
5.337 8
4.445 5
4.761 7
5.637 8
5.071 2
ACWGAN-GP
0.340 6
0.412 0
0.419 7
0.343 7
0.702 4
0.352 2
0.603 9
0.635 6
MDACGAN
0.149 0
0.145 6
0.152 3
0.153 2
0.112 4
0.146 3
0.155 3
0.155 7
Table 4DMM values between real samples and generated samples of CWRU bearing fault data set
Fig.5 Generated samples and training samples t-SNE visualization results of CWRU bearing fault data set
类型
数据集
样本总数/个①
测试集
数据集0
100
训练集
数据集1
50(0)
数据集2
100(50)
数据集3
150(100)
数据集4
200(150)
数据集5
250(200)
数据集6
350(300)
数据集7
200(0)
Table 5Expansion and division of CWRU bearing fault data set
模型
准确率/%
数据集1
数据集2
数据集3
数据集4
数据集5
数据集6
数据集7
ACWGAN-GP
78.37
89.37
92.62
91.12
93.85
94.87
99.75
MDACGAN
78.37
90.25
93.75
95.62
97.13
98.00
99.75
Table 6Classification result of CWRU bearing fault data set
标签
工况
故障类型
失效位置
0
1
Bearing1_1
外圈
1
Bearing1_4
保持架
2
2
Bearing2_1
内圈
3
Bearing2_2
外圈
4
3
Bearing3_3
内圈
5
Bearing3_5
外圈
Table 7Data labels and their fault types of experiment 2
Fig.6 Samples generated by different models on XJTU-SY data set
模型
类别
0
1
2
3
4
5
ACWGAN-GP
270.87
223.04
220.84
69.56
116.89
111.72
MDACGAN
141.37
178.31
144.87
60.16
110.65
66.07
Table 8DFI values between real samples and generated samples of XJTU-SY data set
模型
类别
0
1
2
3
4
5
ACWGAN-GP
0.233 8
0.352 9
0.310 9
0.239 0
0.339 3
0.213 3
MDACGAN
0.164 8
0.198 2
0.160 2
0.115 0
0.178 9
0.122 8
Table 9DMM values between real samples and generated samples of XJTU-SY data set
Fig.7 Generated samples and training samples t-SNE visualization results of XJTU-SY data set
模型
准确率/%
数据集1
数据集2
数据集3
数据集4
数据集5
数据集6
数据集7
ACWGAN-GP
75.00
83.16
83.50
87.33
90.12
92.16
99.66
MDACGAN
75.00
85.86
88.21
89.66
91.83
95.50
99.66
Table 10Classification result of XJTU-SY data set
标签
试验序号
测试的轴承
失效位置
0
1
轴承3
内圈
1
轴承4
滚动体
2
2
轴承1
外圈
3
轴承2
—
4
3
轴承1
—
5
轴承3
外圈
6
轴承4
—
Table 11Data labels and their fault types of experiment 3
Fig.8 Samples generated by different models on IMS data set
模型
类别
0
1
2
3
4
5
6
ACWGAN-GP
255.29
148.21
515.00
195.62
173.14
237.86
106.51
MDACGAN
120.00
23.40
337.67
141.61
88.01
90.92
77.35
Table 12DFI values between real samples and generated samples of IMS data set
模型
类别
0
1
2
3
4
5
6
ACWGAN-GP
0.366 8
0.323 6
0.321 6
0.344 2
0.311 2
0.332 4
0.324 5
MDACGAN
0.180 5
0.141 5
0.213 3
0.134 2
0.144 3
0.197 0
0.116 3
Table 13DMM values between real samples and generated samples of IMS data set
Fig.9 Generated samples and training samples t-SNE visualization results of IMS data set
模型
准确率/%
数据集1
数据集2
数据集3
数据集4
数据集5
数据集6
数据集7
ACWGAN-GP
75.28
86.85
88.71
91.00
89.01
91.85
97.28
MDACGAN
75.28
86.71
88.85
92.71
93.14
95.57
97.28
Table14Classification result of IMS data set
[1]
ZHONG J, HUANG Y. Time-frequency representation based on an adaptive short-time Fourier transform[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5118-5128.
[2]
TSE P W, PENG Y H, YAM R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis: Their effectiveness and flexibilities [J]. Journal of Vibration and Acoustics, 2001, 123(3): 303-310.
[3]
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
[4]
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
[5]
ZHANG W, ZHANG F, CHEN W, et al. Fault state recognition of rolling bearing based fully convolutional network[J]. Computing in Science & Engineering, 2019, 21(5): 55-63.
[6]
WANG D, GUO Q, SONG Y, et al. Application of multiscale learning neural network based on CNN in bearing fault diagnosis[J]. Journal of Signal Processing Systems, 2019, 91(10): 1205-1217.
[7]
HE M, HE D. Deep learning based approach for bearing fault diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 3057-3065.
[8]
RUAN D, SONG X, GÜHMANN C, et al. Collaborative optimization of CNN and GAN for bearing fault diagnosis under unbalanced datasets[J/OL]. Lubricants, 2021, 9(10): 105[2023-10-20]. .
[9]
XIAO D, HUANG Y, QIN C, et al. Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 5131-5143.
[10]
崔旭浩,郗欣甫,孙以泽.数据驱动的经编机横移机构故障检测方法研究[J].工程设计学报,2022,29(3):263-271. doi:10.3785/j.issn.1006-754X.2022.00.030 CUI X H, XI X F, SUN Y Z. Research on data-driven fault detection method of traverse mechanism of warp knitting machine[J]. Chinese Journal of Engineering Design, 2022, 29 (3): 263-271.
doi: 10.3785/j.issn.1006-754X.2022.00.030
[11]
REN S, ZHU W, LIAO B, et al. Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning[J]. Knowledge-Based Systems, 2019, 163: 705-722.
[12]
陈保家,陈学力,肖文荣,等.小样本下滚动轴承故障的多源域迁移诊断方法[J].电子测量与仪器学报,2022, 36(2): 219-228. CHEN J B, CHEN X L, XIAO W R, et al. Multi-source domain transfer diagnosis method for rolling bearing faults under small samples[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 219-228.
[13]
吴定会,方钦,吴楚宜.基于数据生成与迁移学习的轴承小样本故障诊断[J].机械传动,2020,44(11):139-144. WU D H, FANG Q, WU C Y. Bearing small sample fault diagnosis based on data generation and transfer learning [J]. Journal of Mechanical Transmission, 2020, 44(11): 139-144.
[14]
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014: 2672-2680.
[15]
GAO X, DENG F, YUE X. Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty[J]. Neurocomputing, 2020, 396: 487-494.
[16]
HAN T, LIU C, YANG W, et al. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults[J]. Knowledge-Based Systems, 2019, 165: 474-487.
[17]
ZHOU F, YANG S, FUJITA H, et al. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data[J]. Knowledge-Based Systems, 2020, 187: 104837.
[18]
LIU S, CHEN J, QU C, et al. LOSGAN: Latent optimized stable GAN for intelligent fault diagnosis with limited data in rotating machinery[J]. Measurement Science and Technology, 2021, 32(4): 045101.
[19]
ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANS[EB/OL]. [2023-10-20]. .
[20]
SHAO S, WANG P, YAN R. Generative adversarial networks for data augmentation in machine fault diagnosis [J]. Computers in Industry, 2019, 106: 85-93.
[21]
卢锦玲,张祥国,张伟,等.基于改进辅助分类生成对抗网络的风机主轴承故障诊断[J].电力系统自动化,2021, 45(7):148-154. doi:10.7500/AEPS20200415002 LU J L, ZHANG X G, ZHANG W, et al. Fault diagnosis of main bearing of wind turbine based on improved auxiliary classifier generative adversarial network[J]. Automation of Electric Power System, 2021, 45(7): 148-154.
doi: 10.7500/AEPS20200415002
[22]
HUANG N, CHEN Q, CAI G, et al. Fault diagnosis of bearing in wind turbine gearbox under actual operating conditions driven by limited data with noise labels[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
[23]
何强,唐向红,李传江,等.负载不平衡下小样本数据的轴承故障诊断[J].中国机械工程,2021,32(10):1164-1171. doi:10.3969/j.issn.1004-132X.2021.10.004 HE Q, TANG X H, LI C J, et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering, 2021, 32(10): 1164-1171.
doi: 10.3969/j.issn.1004-132X.2021.10.004
[24]
YANG Z K, BU L P, WANG T, et al. Fire image generation based on ACGAN[C]//The 31th Chinese Control and Decision Conference, Nanchang, Jiangxi, Jun., 3-5, 2019.
[25]
DHARANYA V, JOSEPH RAJ A N, GOPI V P. Facial expression recognition through person-wise regeneration of expressions using auxiliary classifier generative adversarial network (AC-GAN) based model[J]. Journal of Visual Communication and Image Representation, 2021, 77: 103110.
[26]
LI W, ZHONG X, SHAO H, et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics, 2022, 52: 101552.
[27]
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//34th International Conference on Machine Learning, Sydney, Australia, Aug. 6-11, 2017.
[28]
王正龙,张保稳.生成对抗网络研究综述[J].网络与信息安全学报,2021,7(4):68-85. doi:10.11959/j.issn.2096-109x.2021080 WANG Z L, ZHANG B W. A survey of research on generative adversarial network[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 68-85.
doi: 10.11959/j.issn.2096-109x.2021080
[29]
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANS[EB/OL]. [2023-10-20]. .
ODENA A. Semi-supervised learning with generative adversarial networks[EB/OL]. [2023-10-20]. .
[32]
MORDIDO G, YANG H, MEINEL C. Dropout-GAN: Learning from a dynamic ensemble of discriminators[J]. arXiv preprint arXiv:, 2018.
[33]
WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Washington, USA, Jun. 14-19. 2020.
[34]
PETZKA H, FISCHER A, LUKOVNICOV D. On the regularization of Wasserstein GANS[J]. arXiv preprint arXiv:, 2017.
[35]
SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131.
[36]
WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
[37]
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANS trained by a two time-scale update rule converge to a local Nash equilibrium[C]//NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, Dec. 4-9, 2017.
[38]
GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13(1): 723-773.
[39]
PEZZOTTI N, LELOEVELDT B P, VAN DER MAATEN L, et al. Approximated and user steerable tSNE for progressive visual analytics[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(7): 1739-1752.
[40]
雷亚国,韩天宇,王彪,等.XJTU-SY滚动轴承加速寿命试验数据集解读[J].机械工程学报,2019,55(16):1-6. doi:10.3901/jme.2019.16.001 LEI Y G, HAN T Y, WANG B, et al. XJTU-SY rolling element bearing accelerated life test datasets: A tutorial [J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6.
doi: 10.3901/jme.2019.16.001