Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 271-279    DOI: 10.3785/j.issn.1006-754X.2024.03.189
Theory and Method of Mechanical Design     
Path planning algorithm for concrete 3D printing based on continuous vertex partitioning
Heng CUI(),Zongfang MA(),Lin SONG,Chao LIU,Yixuan HAN
College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Download: HTML     PDF(2536KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of poor forming quality and long printing time of concrete 3D printing components, a path planning algorithm based on continuous vertex partitioning was proposed. Firstly, the continuous vertex partitioning method based on Hamiltonian circuit was used to divide the print area into several continuous regions to ensure that the print nozzle would not pass the same vertex many times during the printing process, thus avoiding the problem of repeated printing and poor forming quality. Then, the genetic algorithm was used to search each region, and the shortest printing path was determined through iteration and optimization. The experimental results showed that compared with other path planning algorithms, the proposed algorithm could significantly reduce the empty travel and start-stop times of the print nozzle, and shorten the printing time by more than 10%, which effectively improved the forming quality and printing efficiency for concrete components. The concrete 3D printing path planning algorithm based on continuous vertex partitioning solves the problems of poor forming quality and long printing time of concrete components by effectively dividing the print area, intelligentiy searching the shortest path and combining the optimal path, which can provide strong technical support for the development and application of concrete 3D printing technology.



Key wordsconcrete 3D printing      Hamiltonian circuit      genetic algorithm      path optimization     
Received: 25 July 2023      Published: 27 June 2024
CLC:  TP3-05  
Corresponding Authors: Zongfang MA     E-mail: 24854119@qq.com;mazf@xauat.edu.cn
Cite this article:

Heng CUI,Zongfang MA,Lin SONG,Chao LIU,Yixuan HAN. Path planning algorithm for concrete 3D printing based on continuous vertex partitioning. Chinese Journal of Engineering Design, 2024, 31(3): 271-279.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.189     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/271


基于连续顶点分区的混凝土3D打印路径规划算法

针对混凝土3D打印构件成形质量差和打印时间长的问题,提出了一种基于连续顶点分区的路径规划算法。首先,采用基于哈密顿回路的连续顶点分区方法,将打印区域划分为多个连续的区域,以确保在打印过程中打印喷头不会多次经过同一顶点,从而避免了重复打印和成形质量差的问题。然后,使用遗传算法搜索每个区域,通过迭代和优化来确定最短的打印路径。实验结果表明,与其他路径规划算法相比,所提出的算法能够显著减少打印喷头的空行程和启停次数,且缩短打印时间10%以上,有效地提升了混凝土构件的成形质量与打印效率。基于连续顶点分区的混凝土3D打印路径规划算法通过有效划分打印区域、智能搜索最短路径以及合并优化路径的方式,解决了混凝土3D打印构件成形质量差和打印时间长的问题,这可为混凝土3D打印技术的发展和应用提供有力的技术支持。


关键词: 混凝土3D打印,  哈密顿回路,  遗传算法,  路径优化 
Fig.1 Concrete 3D printing flow
Fig.2 Concrete 3D printing path planning process based on continuous vertex partitioning
Fig.3 Concrete material accumulation caused by start and stop of print nozzle
Fig.4 Simulation forming result of concrete component 1
Fig.5 Comparison of printing path partition effect of concrete component 1
算法打印喷头覆盖总长度/mm打印喷头空行程/mm打印喷头启停数/次打印时间/s
本文算法51 6593 5808183
欧拉回路算法53 8205 74016212
Cura软件算法61 25013 17127278
Dijkstra算法58 34010 26023245
Table 1 Simulation results of printing path planning for concrete component 1 based on different algorithms
Fig.6 Simulation forming result of concrete component 2
Fig.7 Comparison of printing path partition effect of concrete component 2
算法打印喷头覆盖总长度/mm打印喷头空行程/mm打印喷头启停数/次打印时间/s
本文算法23 3893 76011132
欧拉回路算法26 0245 10015149
Cura软件算法30 18210 55322181
Dijkstra算法29 3329 70318163
Table 2 Simulation results of printing path planning for concrete component 2 based on different algorithms
Fig.8 Comparison of print forming effect of concrete components based on different algorithms
构件算法打印喷头覆盖总长度/mm打印喷头空行程/mm打印喷头启停数/次打印时间/s
构件1本文算法21 1014 26411195
欧拉回路算法23 4906 65317224
Cura软件算法34 50217 66524253
Dijkstra算法36 97220 13522258
构件2本文算法16 3043 38413150
欧拉回路算法19 6016 68118179
Cura软件算法23 38110 46123202
Dijkstra算法21 9879 06721232
构件3本文算法16 2019004131
欧拉回路算法18 3013 1009163
Cura软件算法28 57213 27113194
Dijkstra算法30 00814 70710212
Table 3 Experimental results of printing path planning for concrete components based on different algorithms

分区数量/

迭代数/次

算法运行

时间/s

打印喷头空行程/mm
2200.34243
400.78243
601.42243
3401.12337
602.18325
803.67325
4603.55458
803.98419
1005.03382
5804.93687
1005.86612
1207.34612
61007.42945
1209.09863
14010.93825
Table 4 Running time of algorithm in this paper and empty travel of print nozzle under different iterations
[1]   盛蕾,武雷.3D打印混凝土技术研究综述[J].混凝土与水泥制品,2021(10):7-11.
SHENG L, WU L. Summary of 3D printed concrete technology research[J]. China Concrete and Cement Products, 2021(10): 7-11.
[2]   王猛.增材制造直接分层和路径规划技术研究[J].机械工程与自动化,2018(6):34-35,38. doi:10.3969/j.issn.1672-6413.2018.06.012
WANG M. Research on direct slicing and path planning technology of additive manufacturing[J]. Mechanical Engineering & Automation, 2018(6): 34-35, 38.
doi: 10.3969/j.issn.1672-6413.2018.06.012
[3]   汤寄予,席义斌,高丹盈,等.3D打印混凝土的可打印性研究综述[J].混凝土与水泥制品,2022(12):18-23.
TANG J Y, XI Y B, GAO D Y, et al. Review on printability of 3D printed concrete[J]. China Concrete and Cement Products, 2022(12): 18-23.
[4]   崔凤英,李晓微.3D打印路径规划研究[J].青岛科技大学学报(自然科学版),2020,41(2):101-105.
CUI F Y, LI X W. Research on 3D printing path planning[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2020, 41(2): 101-105.
[5]   马宗方,万伟鹏,宋琳,等.采用欧拉回路的混凝土3D打印路径优化算法[J].机械科学与技术: 1-7(2023-02-21)[2023-07-15]..
MA Z F, WAN W P, SONG L, et al. Path optimization algorithm for concrete 3D printing using the Euler circuit[J]. Mechanical Science and Technology for Aerospace Engineering: 1-7 (2023-02-21) [2023-07-15]. .
[6]   WAN Q, WANG L, MA G W. Continuous and adaptable printing path based on transfinite mapping for 3D concrete printing[J]. Automation in Construction, 2022, 142: 104471.
[7]   FOK K Y, GANGANATH N, CHENG C T, et al. A 3D printing path optimizer based on christofides algorithm[C]//2016 IEEE International Conference on Consumer Electronics. Nantou, Taiwan, China, May 27-29, 2016.
[8]   王祎,葛静怡,薛昕惟,等.改进Q学习的薄壁结构3D打印路径规划[J].计算机工程与应用,2022,58(12):299-303. doi:10.3778/j.issn.1002-8331.2012-0438
WANG Y, GE J Y, XUE X W, et al. Path planning for complex thin-walled structures in 3D printing: improved Q-learning method[J]. Computer Engineering and Applications, 2022, 58(12): 299-303.
doi: 10.3778/j.issn.1002-8331.2012-0438
[9]   曹俊峰.面向3D混凝土打印的双螺旋路径规划算法研究与施工作业系统搭建[D].武汉:华中科技大学,2021.
CAO J F. Research on 3D concrete printing-oriented double helix path planning algorithm and construction operation system construction[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[10]   高遵海,陈倬.图的路径运算矩阵与哈密顿回路等路径问题[J].华中科技大学学报(自然科学版),2021,49(2):32-36. doi:10.13245/j.hust.210204
GAO Z H, CHEN Z. Path-operation matrices of graph for solving Hamilton cycles and other path problems[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(2): 32-36.
doi: 10.13245/j.hust.210204
[11]   王港华.基于遗传算法的小规模TSP问题研究分析[J]. 物流工程与管理,2022,44(3):111-114. doi:10.3969/j.issn.1674-4993.2022.03.031
WANG G H. Research analysis of small-scale TSP problem based on genetic algorithm[J]. Logistics Engineering and Management, 2022, 44(3): 111-114.
doi: 10.3969/j.issn.1674-4993.2022.03.031
[12]   胡作玄,王献芬.两个古老的回路问题[J].科学世界,2007(5):82-89.
HU Z X, WANG X F. Two ancient circuit problems[J]. Science World, 2007(5): 82-89.
[13]   张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588.
ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588.
[14]   黄舒弈,张宇,徐卫国.机器人3D打印建筑的打印路径规划方法探索[J].建筑技艺,2022,28(7):79-81. doi:10.3969/j.issn.1674-6635.2022.07.010
HUANG S Y, ZHANG Y, XU W G. Exploring tool path planning methods of the robotic 3DP construction[J]. Architecture Technique, 2022, 28(7): 79-81.
doi: 10.3969/j.issn.1674-6635.2022.07.010
[15]   叶志琳.基于邻接矩阵和递归算法的哈密顿回路研究[J].佳木斯大学学报(自然科学版),2022,40(4):164-167.
YE Z L. Research on Hamiltonian loop based on adjacency matrix and recursive algorithm[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(4): 164-167.
[16]   陈旭.基于遗传算法的移动机器人路径规划研究综述[J].科技和产业,2023,23(8):274-278. doi:10.3969/j.issn.1671-1807.2023.08.042
CHEN X. Summary of research on path planning of mobile robot based on genetic algorithms[J]. Science Technology and Industry, 2023, 23(8): 274-278.
doi: 10.3969/j.issn.1671-1807.2023.08.042
[17]   尹雅楠.基于改进遗传算法的无人机航迹规划与任务分配方法研究[D].石家庄:河北科技大学,2023.
YIN Y N. Research on UAV path planning and task allocation method based on improved genetic algorithm[D]. Shijiazhuang: Hebei University of Science and Technology, 2023.
[18]   刘树赵,邹德旋,罗鸿赟,等.改进遗传算法求解旅行商问题[J].计算机时代,2023(5):66-71.
LIU S Z, ZOU D X, LUO H Y, et al. Improved genetic algorithm to solve traveling salesman problem[J]. Computer Era, 2023(5): 66-71.
[19]   雷聪蕊,葛正浩,魏林林,等.3D打印模型切片及路径规划研究综述[J].计算机工程与应用,2021,57(3):24-32. doi:10.3778/j.issn.1002-8331.2009-0106
LEI C R, GE Z H, WEI L L, et al. Review of 3D printing model slicing and path planning research[J]. Computer Engineering and Applications, 2021, 57(3): 24-32.
doi: 10.3778/j.issn.1002-8331.2009-0106
[20]   翟晓雅,陈发来.分形模型的3D打印路径规划[J].计算机辅助设计与图形学学报,2018,30(6):1123-1135. doi:10.3724/sp.j.1089.2018.16618
ZHAI X Y, CHEN F L. 3D printing path planning of fractal models[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(6): 1123-1135.
doi: 10.3724/sp.j.1089.2018.16618
[21]   圣文顺,徐爱萍,徐刘晶.基于蚁群算法与遗传算法的TSP路径规划仿真[J].计算机仿真,2022,39(12):398-402,412. doi:10.3969/j.issn.1006-9348.2022.12.073
SHENG W S, XU A P, XU L J. Simulation of traveling salesman path planning based on ant colony algorithm and genetic algorithm[J]. Computer Simulation, 2022, 39(12): 398-402, 412.
doi: 10.3969/j.issn.1006-9348.2022.12.073
[1] Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.
[2] Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
[3] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[4] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[5] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[6] Xin MI,Hong LI,Yan-qing GUO,Hong-wei GAO,Hao-nan WANG,Yi-fan NING. Parameter optimization of single plunger pump check valve based on linear regression[J]. Chinese Journal of Engineering Design, 2022, 29(6): 705-712.
[7] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[8] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[9] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[10] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[11] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[12] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[13] HE Gai-yun, PANG Kai-rui, SANG Yi-cun, LIU Chen-hui, WANG Hong-liang. Application of surface matching method in tool path optimization[J]. Chinese Journal of Engineering Design, 2019, 26(2): 190-196.
[14] DENG Xing, YU Lan-feng, LEI Cong, XU Jiang-ping, XIAO Ze-ping. Lightweight design of trackless telescopic gantry crane based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(3): 288-294.
[15] TANG Wei, XIE Yan-min, HUANG Ren-yong, ZHANG Fei, PAN Bei-bei. Constitutive parameter inverse for nonisothermal stamping of magnesium alloy based on adaptive SVR-ELM mixture surrogate model[J]. Chinese Journal of Engineering Design, 2017, 24(5): 536-544.