Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 191-198    DOI: 10.3785/j.issn.1006-754X.2020.00.024
Design for Quality     
Coordinated control of roll and smoothness of vehicle based on shear magnetorheological damper
YAO Jia-ling, TANG Zheng, BAI Ya-nan
College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
Download: HTML     PDF(1440KB)
Export: BibTeX | EndNote (RIS)      

Abstract  It is difficult to effectively control roll of vehicle during steering because the ordinary magnetorheological damper (MRD) can not provide a larger damping force at low velocity. In order to solve this problem, a sheer MRD with large damping force at low velocity was designed to improve the anti-rolling performance of vehicle. The structure and magnetic field design of sheer MRD were carried out, the damping force model of sheer MRD was built. The output characteristic curve of the damper was obtained through the Simulink simulation, and the polynomial mathematical model of the MRD was established. In addition, a dynamics six-degree-of-freedom steering-roll model of vehicle was established, and the optimal control of limiting amplitude was used to design the roll and smoothness coordination controller. The dynamics simulation of MR semi-active suspension limiter optimal control under the condition of double lane change with the software of MATLAB was carried out, and the simulation results showed that compared with the conventional MRD, vehicle body roll angle and lateral load transfer rate (LLRT) had a significant reduction under anti-rolling mode during steering, at the same time, parameters includeing the body acceleration, tire dynamic load and suspension dynamic deflection had some improvement. The research showed that the shear MRD could effectively inhibit the vehicle body roll during steering, improve body posture, and keep the vehicle in good smoothness. Besides, it could effectively improve turning capacity of vehicle and prevent the vehicle from rollover. The research result provides some theoretical supports for the application of MR semi-active suspension in the vehicle roll control.

Key wordsmagnetorheological damper      polynomial mathematical model      semi-active suspension      clipped optimal control     
Received: 09 September 2019      Published: 28 April 2020
CLC:  U 463.335  
Cite this article:

YAO Jia-ling, TANG Zheng, BAI Ya-nan. Coordinated control of roll and smoothness of vehicle based on shear magnetorheological damper. Chinese Journal of Engineering Design, 2020, 27(2): 191-198.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.024     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/191


基于剪切式磁流变减振器的车辆侧倾与平顺性协调控制

车辆转向时,由于普通磁流变减振器在低速下无法提供较大的阻尼力,难以有效对车辆进行侧倾控制,针对此问题,设计了一种具有低速大阻尼特性的剪切式磁流变减振器,以提升车辆的抗侧倾性能。对剪切式磁流变减振器的结构和磁场进行设计,并建立剪切式磁流变减振器阻尼力模型;通过Simulink仿真得到该减振器的输出特性曲线,并建立磁流变减振器多项式数学模型;建立车辆六自由度转向-侧倾动力学模型,基于限幅最优控制设计车辆侧倾和平顺性协调控制器,并运用MATLAB软件对磁流变半主动悬架限幅最优控制双移线工况进行动力学仿真。仿真结果表明:当车辆转弯时,相较于常规模式,抗侧倾模式下车身侧倾角和横向载荷转移率显著减小,同时车身加速度、轮胎动载荷及悬架动挠度等参数有一定的改善。研究表明剪切式磁流变减振器能够有效抑制车辆转弯时的车身侧倾,改善车身姿态,同时使车辆保持良好的平顺性,提升了车辆的弯道通行能力,防止车辆侧翻事故发生。研究结果可为磁流变半主动悬架在车辆侧倾控制中的应用提供理论支持。

关键词: 磁流变减振器,  多项式数学模型,  半主动悬架,  限幅最优控制 
[1] BALAMURUGANL, JANCIRANIJ, ELTANTAWIEM A. Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system[J]. International Journal of Automotive Technology, 2014, 15(3): 419-427. doi: 10.1007/s12239-014-0044-4
[2] IMADUDDINF, MAZLANS A, ZAMZURIH. A design and modelling review of rotary magnetorheological damper[J]. Materials & Design, 2013, 51: 575-591. doi: 10.1016/j.matdes.2013.04.042
[3] GURUBASAVARAJUT M, KUMARH, ARUMM. Optimisation of monotube magnetorheological damper under shear mode[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 30(6): 2225-2240. doi: 10.1007/s40430-017-0709-9
[4] JAE-HOONL, CHANGWANH, DONGSUA, et al. Design and performance evaluation of a rotary magnetorheolgical damper for unmanned vehicle suspension systems[J]. The Scientific World Journal, 2013, 2013: 1-10. doi: 10.1155/2013/894016
[5] GURUBASAVARAJUT M, KUMARH, MAHALINGAMA. An appraoach for characterizing twin-tube shear-mode magnetorheological damper through coupled FE and CFD analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 139. doi: 10.1007/s40430-018-1066-z
[6] 祝长生. 交变磁场下盘型磁流变流体阻尼器的动力特性[J]. 浙江大学学报(工学版),2009,40(3):464-468. doi: 10.3785/j.issn.1008-973X.2006.03.021 ZHUChang-sheng. Dynamic performance of disk-type magnetorheological fluid damper under alternating magnetic field [J]. Journal of Zhejiang University (Engineering Science), 2009, 40(3): 464-468.
[7] 李军强,王娟,刘今越. 三工作面旋转式磁流变阻尼器设计与实验[J]. 农业机械学报,2014,45(8):314-320. doi: 10.6041/j.issn.1000-1298.2014.08.050 LIJUN-qiang, WANGJuan, LIUJin-yue. Design and experiments of rotory magnetorheological damper with three working surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 314-320.
[8] 王修勇,孙洪鑫,陈政清. 旋转剪切式磁流变液阻尼器设计及力学模型[J]. 振动与冲击,2010,29(10):77-81. doi: 10.3969/j.issn.1000-3835.2010.10.015 WANGXiu-yong, SUNHong-xin, CHENZheng-qing. Design and mechanical model of a rotary-mode shear MR damper[J]. Journal of Vibration and Shock, 2010, 29(10): 77-81.
[9] 周云,谭平. 磁流变阻尼控制理论与技术[M]. 北京:科学出版社,2007:20-23. ZHOUYun, TANPing. Theory and technology of MR damper control[M]. Beijing: Science Press, 2007: 20-23.
[10] 蒋建东,梁锡昌,张博. 适用于车辆的旋转式磁流变阻尼器研究[J]. 汽车工程,2005,27(1):77-79,82. doi: 10.3321/j. issn:1000-680X.2005.01.020 JIANGJian-dong, LIANGXi-chang, ZHANGBo. A study on rotary magnetorheological damper for vehicles[J]. Automobile Engineering, 2005, 27(1): 77-79, 82.
[11] NANTHAKUMARA J D, JANCIRANIJ. Design optimization of magnetorheological damper geometry using response surface method for achieving maxinum yield stress[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4319-4329. doi: 10.1007/s12206-019-0828-6
[12] YOOND S, PARKY J, CHOIS B. An eddy current effect on the response time of a magnetorheological damper analysis and experimental validation[J]. Mechanical Systems and Signal Processing, 2019, 127: 136-158. doi: 10.1016/j.ymssp.2019.02.058
[13] 于振环,刘顺安,张娜, 等. 磁流变减振器多场耦合仿真分析[J]. 农业机械学报,2014,45(1):1-7. doi: 10.6041/j. issn.1000-1298.2014.01.001 YUZhen-huan, LIUShun-an, ZHANGNa, et al. Multi-field coupling simulation analysis of MR damper[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 1-7.
[14] 段敏,石晶,苏海华,等. 汽车磁流变减振器的设计及多项式模型的研究[J]. 机械设计与制造,2011(11):36-38. doi: 10.3969/j.issn.1001-3997.2011.11.015 DUANMin, SHIJin, SUHai-hua, et al. Design for automobiles magneto-rheological damper and research on polynomial model[J]. Machinery Design & Manufacture, 2011(11): 36-38.
[15] 安部正人. 车辆操纵动力学理论与应用[M]. 2版. 喻凡,译. 北京:机械工业出版社,2016:141-167. MOSATOA. Theory and application of vehicle handling dynamics[M]. 2th. Translated by YU Fan. Beijing: China Machine Press, 2016: 141-167.
[16] 王亚雄,蔡宇萌,王健, 等. 汽车侧倾运动安全主动悬架LQG控制器设计方法[J]. 交通运输工程学报,2017, 17(5):138-148.doi:10.3969/j.issn.1671-1637.2017.05.013 WANGYa-xiong, CAIYu-meng, WANGJian, et al. Design method of active suspension LQG controller for rolling motion safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 138-148.
[17] 张志达,李韶华,赵俊武. 基于层次分析法的汽车半主动悬架LQG控制研究[J]. 农业装备与车辆工程,2018, 56(1):1-5. doi: 10.3969/j.issn.1673-3142.2018.01.001 ZHANGZhi-da, LIShao-hua, ZHAOJun-wu. Study on LQG control for vehicle semi-active suspension based on analytic hierarchy process[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56(1): 1-5.
[18] CANALEM, MILANESEM, NOVARAC. Semi-active suspension control using “fast” model-predictive techniques[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1034-1046. doi: 10.1109/TCST. 2006.880196
[1] PAN Shuang-Xia, ZHANG Wei-Qian, WANG Wei-Rui, WU Can. Magnetorheological shock absorber modeling based on the modified Backlash hysteresis[J]. Chinese Journal of Engineering Design, 2010, 17(4): 258-262.
[2] MA Lv-Zhong, XU Hua-Wei, XIE Jun, ZHU Wei. Application of magnetorheological damper on multi-DIM vibration absorber[J]. Chinese Journal of Engineering Design, 2007, 14(1): 21-24.