Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 182-190    DOI: 10.3785/j.issn.1006-754X.2020.00.032
Design for Quality     
Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank
LI Cheng-bing1,2, LEI Peng1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China;
2.Key Laboratory of Petroleum and Natural Gas Equipment, Ministry of Education,Southwest Petroleum University, Chengdu 610500, China
Download: HTML     PDF(1460KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to minimize the extent of injury caused by internal overpressure, storage tanks for flammable and explosive substances such as oil and natural gas must be designed as weak roof structures according to the relevant design standards and specifications at home and abroad. The common 5 000 m3 vertical dome storage tank was analyzed to obtain a suitable design method of weak roof structure. Firstly, the structural parameters of the storage tank were designed and its weak roof performance was preliminarily evaluated by the GB 50341—2014 Code for the Design of Vertical Cylindrical Steel Welded Oil Tanks. Secondly, the structure of the storage tank was analyzed by the finite element method to obtain the key parameters such as lifting height, lifting radius, maximum equivalent stress and film stress under the conditions of empty, half and full tank. The strength, structural stability, failure mode and weak roof performance of the storage tank were evaluated on these key parameters. Finally, it was conducted to analyze the influence of key parameters such as the roof-wall connection weld angle height, the tank roof curvature radius, the boundary plate thickness and the tank height-diameter ratio on the weak roof performance. The results showed that the 5 000 m3 vertical dome storage tank designed by the GB 50341—2014 did not meet the weak roof performance. However, some methods which could enable the tank to meet the weak roof structure were proposed: the roof-wall connection weld angle height was increased to 3.75 mm, the tank roof curvature radius was increased to 3.0D (D was the tank diameter), the boundary plate thickness was increased to 15 mm, or the tank height-diameter ratio was increased to 2.0. The research results can provide a reference for improving the weak roof structure of the storage tank.

Key wordsvertical dome storage tank      weak roof performance      finite element analysis      stress analysis      failure mode     
Received: 18 June 2019      Published: 28 April 2020
CLC:  TQ 053.2  
Cite this article:

LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank. Chinese Journal of Engineering Design, 2020, 27(2): 182-190.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.032     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/182


5 000 m3立式拱顶储罐应力分析与弱顶性能评价

根据国内外相关设计标准与规范,石油天然气等易燃易爆气体的储罐必须设计成弱顶结构,以最大限度地降低因内部超压而发生事故的危害程度。为了得到合适的弱顶结构设计方法,以常见的5 000 m3立式拱顶储罐为对象展开分析。首先,根据GB 50341—2014《立式圆筒形钢制焊接油罐设计规范》,对储罐结构参数进行设计并对其弱顶性能进行初步评价;然后,利用有限元分析方法对储罐结构进行分析,获得储罐在空罐、半罐、满罐工况下的提离高度、提离半径、最大等效应力和薄膜应力等关键参数,并在此基础上对储罐强度、稳定性、破坏形式和弱顶性能进行综合评价;最后,分析了顶壁连接焊角高度、罐顶曲率半径、边缘板厚度和罐体高径比等关键参数对储罐弱顶性能的影响。结果表明:基于GB 50341—2014设计的5 000 m3立式拱顶储罐并不具备弱顶性能,顶壁连接焊角高度减小到3.75 mm,或罐顶曲率半径增大到3.0DD为储罐直径),或边缘板厚度增大到15 mm,或罐体高径比增大到2.0都能使该储罐满足弱顶结构的设计要求。研究结果可为储罐弱顶结构的改进提供参考。

关键词: 立式拱顶储罐,  弱顶性能,  有限元分析,  应力分析,  破坏形式 
[1] 黄文霞,黄大炜,王永勇. 渣油拱顶罐拱顶失稳的有限元分析[J]. 化工机械,2007,34(4):193-196. doi: 10.3969/j. issn.0254-6094.2007.04.004 HUANGWen-xia, HUANGDa-wei, WANGYong-yong. Finite element analysis of the vault destabilization of a residuum oil tank[J]. Chemical Engineering and Machinery, 2007, 34(4): 193-196.
[2] MORGENEGGE. New design rules for frangible roof tanks[J]. Hydrocarbon Rocessing, 1978, 57 (8): 11-14.
[3] PRAGERM. Investigation of frangibility of geodesic dome roofs used in aboveground storage tanks[J]. Welding Research Council Progress Reports, 2005, 60(3): 3-37.
[4] WUT Y, LIUG R. Comparison of design methods of a tank-bottom annular plate and correct ring-wall[J]. International Journal of Pressure Vessels and Piping, 2000, 77(9): 511-517.doi:10.1016/S0308-0161(00)00055-7
[5] 孙正国. 储油罐顶对壳的弱连接结构[J]. 油气储运, 1991,10(1):1-5. SUNZheng-guo. Weakly connecting structure between roof and shell of oil storage tank[J]. Oil and Gas Storage and Transportation, 1991, 10(1): 1-5.
[6] 郑力翀. 大型钢储罐爆炸动力响应及热屈曲数值模拟[D]. 杭州:浙江大学建筑工程学院,2015:1-9. ZHENGLI-chong. Numerical simulation for explosion dynamic responses and thermal buckling of large steel tanks[D]. Hangzhou: Zhejiang University, College of Civil Engineering and Architecture, 2015: 1-9.
[7] 刘巨保,许蕴博. 基于GB 50341标准设计的立式拱顶储罐弱顶结构分析与评价[J]. 化工机械,2011,38(4): 423-427. LIUJu-bao, XUYun-bo. Weak-roof structure analysis and evaluation of vertical dome tank based on GB 50341[J]. Chemical Engineering & Machinery, 2011, 38(4): 423-427.
[8] 刘巨保,胡衍明,丁宇奇,等. 2万m3立式锥顶储罐弱顶结构分析与评价[J]. 石油化工设备,2010,39(4):31-35.doi:10.3969/j.issn.1000-7466.2010.04.009 LIUJu-bao, HUYan-ming, DINGYu-qi, et al. Analysis and evaluation for weak-proof structure of 2×104 m3 vertical cone-roof oil tank[J]. Petro-chemical Equipment, 2010, 39(4): 31-35.
[9] 刘巨保,门建斌,丁宇奇,等. 2万m3立式网壳顶储罐破坏分析及弱顶性能评价[J].石油化工设备,2013,42(3):48-53. doi: 10.3969/j.issn.1000-7466.2013.03.012 LIUJu-bao, Jian-binMEN, DINGYu-qi, et al. Failure analysis and evaluation for weak roof performance of 2×104 m3 vertical latticed shell roof storage tank[J]. Petro-chemical Equipment, 2013, 42(3): 48-53.
[10] 刘明,费继增,田孝伟. 3 000 m3立式拱顶储罐弱顶结构有限元分析与评价[C]//第三届中国油气储运技术交流大会论文集,成都,2012-05-01. 2013-10-29)[2019-06-10]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7926654
LIUMing, FEI Ji-zeng, TIAN Xiao-wei. Finite element analysis and evaluation of weak top structure of 3000 m3 vertical vault storage tank[C]//Proceeding of the 3th China Oil and Gas Storage and Transportation Technology Exchange Conference, Chengdu, 2012-05-01. 2013-10-29)[2019-06-10]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7926654
[11] 丁宇奇,刘巨保,武铜柱,等. 基于三维模型的立式拱顶储罐应力分析与弱顶影响因素分析[J]. 压力容器,2011, 28(12):11-17. doi:10.3969/j.issn.1001-4837.2011.12.003 DINGYu-qi, LIUJu-bao, WUTong-zhu, et al. Stress analysis of vertical dome tank and influence factors analysis of weak roof based on three-dimensional model[J]. Pressure Vessel Technology, 2011, 28(12): 11-17.
[12] HUKe, ZHAOYang. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof[J]. Thin-Walled Structures, 2016, 105: 16-28. doi: 10.1016/j.tws.2016.03.026
[13] 邱水才,张玲艳,李云. 拱顶罐的弱顶结构失效分析[J]. 广州化工,2018,46(23):143-145. doi:10.3969/j.issn.1001-9677.2018.23.045 QIUShui-cai, ZHANGLing-yan, LIYun. Failure analysis of weak top structure for dome-roof tank[J]. Guangzhou Chemical Industry, 2018, 46(23): 143-145.
[14] 黄晓明. 浅谈大型储罐的“最后一道安全防线”——弱顶结构[J]. 劳动保护科学技术,1999(3):51-53. HUANGXiao-ming. Talking about the "last safety line" of large storage tanks—weak top structure[J]. Journal of Safety Science and Technology, 1999(3): 51-53.
[15] 尹晔昕,薛明德. 拱顶储罐承压圈型式与承载能力的关系[J]. 压力容器,2002,19(10):25-29. doi:10.3969/j.issn.1001-4837.2002.10.007 YINYe-xin, XUEMing-de. Relation between types of compression rings of fixed roof tanks and loading capability[J]. Pressure Vessel Technology, 2002, 19(10): 25-29.
[16] 王夫安,金维昂,孙正国,等.立式圆筒形钢制焊接油罐设计规范:GB 50341—2003[S]. 北京:中国计划出版社,2003:20-37. WANGFu-an, JINWei-ang, SUNZheng-guo, et al. Code for design of vertical cylindrical welded steel oil tanks: GB 50341—2003[S]. Beijing: China Planning Press, 2003: 20-37.
[17] 傅伟庆,张文伟,孙正国,等. 立式圆筒形钢制焊接油罐设计规范:GB 50341—2014[S]. 北京:中国计划出版社,2014:17-35. FUWei-qing, ZHANGWen-wei, SUNZheng-guo, et al. Code for design of vertical cylindrical welded steel oil tanks: GB 50341—2014[S]. Beijing: China Planning Press, 2014: 17-35.
[18] 邵祖光. 钢制压力容器——分析设计标准:JB 4732—1995[S].北京:中国标准出版社,2005:12-19. SHAOZu-guang. Steel pressure vessels—design by analysis: JB 4732—1995[S]. Beijing: Standards Press of China, 2005: 12-19.
[19] POYNTZAve. Study to establish relations for the relative strength of API 650 cone roof roof-to-shell and shell-to-bottom joints:API PUBLICATION 937-A[S]. Manhattan: American Petroleum Institute, 2005: 51-54.
[1] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chinese Journal of Engineering Design, 2021, 28(4): 504-510.
[2] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chinese Journal of Engineering Design, 2021, 28(2): 227-234.
[3] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chinese Journal of Engineering Design, 2021, 28(1): 95-104.
[4] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chinese Journal of Engineering Design, 2021, 28(1): 25-32.
[5] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chinese Journal of Engineering Design, 2020, 27(6): 713-719.
[6] LIU Zhao, YOU Hong-xin, SUN Liang, YANG Yu-ling, LIU Hua-qing. Design of suspended hydraulic transmission rotary detection platform for large spherical tank[J]. Chinese Journal of Engineering Design, 2019, 26(3): 267-273.
[7] SONG Jian-hu. Vibration analysis of a data transmission antenna on high orbit satellite[J]. Chinese Journal of Engineering Design, 2019, 26(3): 274-279.
[8] LI Ke-ming, PENG Wen-zhu, ZHANG Ze-kun, GU Chao-hua, XU Ping. Comparison of design methods for internally pressurized ellipsoidal head[J]. Chinese Journal of Engineering Design, 2019, 26(1): 1-7,28.
[9] GAO Zhi-lai, QIU Zi-xue, REN Dong, CUI De-you, XU Xin-peng. Structure design and optimization for crossbeam of bridge gantry milling machine[J]. Chinese Journal of Engineering Design, 2019, 26(1): 56-64.
[10] LUO Yan-yan, WU Xiong-wei, TIAN Ya-chao, YU Chang-chao. Study on the contact performance of electric connector under impact environment[J]. Chinese Journal of Engineering Design, 2018, 25(1): 110-117.
[11] ZHANG Qiang, WU Ze-guang, WU Ze-yang, WANG Hai-jian. Research on online testing and analysis of guide foot force of shearer[J]. Chinese Journal of Engineering Design, 2017, 24(6): 694-701,716.
[12] CHENG Ming, CHEN Zhao-bo, KIM Kyongsol, JIAO Ying-hou. Design and analysis of MR damper with multistage serpentine magnetic circuit[J]. Chinese Journal of Engineering Design, 2017, 24(3): 350-358.
[13] LIU Fan, QIN Na, NIU Jian-di, ZHENG Liang. Finite element simulation and experimental research on rotary ultrasonic grinding of titanium alloy[J]. Chinese Journal of Engineering Design, 2017, 24(2): 162-167.
[14] LUO Yan-yan, YANG Jing-yu, LIU Xin-wei, LI Xiao-ning. Numerical analysis and experimental verification on stress field of electrical connector contact[J]. Chinese Journal of Engineering Design, 2016, 23(6): 564-570.
[15] LIU Kai, CAO Yi, ZHOU Rui, DING Rui, GE Shu-yi. Modeling and analysis of compressive inside LET flexure hinge[J]. Chinese Journal of Engineering Design, 2016, 23(6): 585-591.