Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 199-211    DOI: 10.3785/j.issn.1006-754X.2020.00.017
Optimization Design     
Design and optimization of a passive exoskeleton mechanical foot
REN Meng-yi1, CAO En-guo2, ZHAO Yong-wu1, YANG Bin2, CUI Yu-tian2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2.School of Design, Jiangnan University, Wuxi 214122, China
Download: HTML     PDF(2940KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Passive exoskeleton can reduce walking energy consumption for human and doesn't require electric energy, it has a wide range of applying prospect in military and civilian fields. Aiming at the problem that existing passive exoskeleton saves less energy and cannot adapt to different walking configurations, the multi-level energy lock principle was proposed and a passive exoskeleton mechanical foot was designed according to this principle. Based on multi-level energy lock principle, human-machine coupling ADAMS (automatic dynamic analysis of mechanical systems) dynamics models during energy storing phase and energy releasing phase in support phase during human walking were established. Subsequently, the passive exoskeleton mechanical foot was optimized: based on the dynamics models, the effect of two structure parameters including the spring position and spring release angle on the assist performance of the mechanical foot was analyzed, and the optimal values of the parameters were obtained by combining the heel height. Based on walking experiment and finite element analysis, the strength, stiffness, smoothness and comfort of the passive exoskeleton mechanical foot were optimized. After the optimization, the mass of the mechanical foot was reduced 500 g, the safety factor reached 3.04, smoothness and comfort had a comprehensive improvement. The research showed that the energy releasing phase was the key phase for the exoskeleton mechanical foot to play a role; spring release angle had a significant effect on the assist performance of the mechanical foot during the energy releasing phase, and thus became a key parameter affecting the assist performance of the mechanical foot. This research will provide an important reference for exoskeleton design.

Key wordspassive exoskeleton      structure design      dynamics      optimization      assist performance     
Received: 08 November 2018      Published: 28 April 2020
CLC:  TH 16  
  TB 472  
Cite this article:

REN Meng-yi, CAO En-guo, ZHAO Yong-wu, YANG Bin, CUI Yu-tian. Design and optimization of a passive exoskeleton mechanical foot. Chinese Journal of Engineering Design, 2020, 27(2): 199-211.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.017     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/199


一种被动式外骨骼机械足的结构设计及优化

被动式外骨骼可以减少行走能量消耗且不耗费电能,在军事、民用领域具有广阔的应用前景。针对现有被动式外骨骼节省的能量较少且无法适应不同行走配置等问题,提出了多级能量锁原理,并根据此原理设计了一款被动式外骨骼机械足。首先,基于多级能量锁原理,建立人体行走时支撑相储能阶段和释能阶段的人机耦合ADAMS(automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)动力学模型。然后,对被动式外骨骼机械足进行了优化:基于所建立的动力学模型分析了弹簧位置和弹簧释放角度这2个结构参数对机械足助力性能的影响规律,并结合足跟高度求得了这2个参数的最优解。最后,基于行走实验和有限元仿真分析,对被动式外骨骼机械足的强度、刚度、流畅性和舒适性等进行了优化,优化后机械足的质量约减轻500 g,安全系数达到了3.04,运行流畅性和舒适性显著提升。结果表明,释能阶段是被动式外骨骼机械足发挥作用的关键阶段;弹簧释放角度对释能阶段机械足助力性能的影响较为显著,即为影响机械足助力性能的关键参数。研究结果可为外骨骼设计提供重要参考。

关键词: 被动式外骨骼,  结构设计,  动力学,  优化,  助力性能 
[1] COLLINSS H, WIGGINM B, SAWICKIG S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522 (7555): 212-215. doi: 10.1038/nature14288
[2] DIJK WietseVAN, KOOIJ Herman VanDER. XPED2: a passive exoskeleton with artificial tendons[J]. IEEE Robotics & Automation Magazine, 2011, 21(4): 56-61. doi: 10.1109/MRA. 2014.2360309
[3] MALCOLMP, DERAVEW, GALLES. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking[J]. PLoS ONE, 2013, 8 (2): 8-10. doi: 10.1371/journal.pone. 0056137
[4] AGRAWALS K, BANALAS K, FATTAHA, et al. A gravity balancing passive exoskeleton for the human leg[C]//Proceeding of the 2006 Robotics: Science and Systems. Cambridge: MIT Press, 2007: 461-466.
[5] EDGECOMBEG D, LEGGD A. Origins and early evolution of arthropods[J]. Palaeontology, 2014, 57(Part 3): 457-468. doi: 10.1111/pala.12105
[6] 张晓峰. 澳大利亚军队的新型可穿戴外骨骼[J]. 医疗卫生装备,2016,37(11):164. ZHANGXiao-feng. New wearable exoskeleton of the Australian Army[J]. Chinese Medical Equipment Journal, 2016, 37(11): 164.
[7] MOCHONS, MCMAHONT A. Ballstic walking[J]. Journal of Biomechanics, 1980, 13(1): 49-57.
[8] MOCHONS, MCMAHONT A. Ballistic walking: an improved model[J]. Mathematical Biosciences, 1980, 52(3/4): 241-260. doi: 10.1016/0025-5564(80) 90070-X
[9] FORMAL’SKYA M. Ballistic locomotion of a biped[M]. Vienna: Springer, 1997: 191-229.
[10] OGINOM, HOSODAK, ASADAM. Learning energy efficient walking with ballistic walking[M]//Adaptive Motion of Animals & Machines. Tokyo: Springer, 2006: 155-164. doi:10.1007/4-431-31381-8_14
[11] 李杨. 助力型人体下肢外骨骼理论分析与实验研究[D].南京:南京理工大学机械工程学院,2017:45-56. LIYang. Theoretical analysis and experimental research of the power-support human lower extremity exoskeleton[D]. Nanjing: Nanjing University of Science and Technology, School of Mechanical Engineering, 2017: 45-56.
[12] AOUSTINY, FORMALSKIIA M. Walking of biped with passive exoskeleton: evaluation of energy consumption[J]. Multibody System Dynamics, 2018, 43(1): 71-96. doi: 10. 1007/s11044-017-9602-7
[13] 赵宏垚, 徐秀林. 人体膝关节的力矩参数[J]. 中国组织工程研究与临床康复,2011, 15(4):705-708. doi: 10.3969/j.issn.1673-8225.2011. 04.033 ZHAOHong-yao, XUXiu-lin. Torque parameters of human knee joint[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(4): 705-708. doi:10.3969/j.issn.1673-8225.2011.04.033
[14] 张燕, 李梵茹, 李威, 等. 基于人机耦合的下肢外骨骼动力学分析及仿真[J].应用数学和力学, 2019,40(7):780-790. doi: 10.21656/1000-0887. 390212 ZHANGYan, LIFan-ru, LIWei, et al. Dynamic analysis and simulation of the lower extremity exoskeleton based on human-machine interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790.
[15] 关鑫宇, 季林红, 王人成. 无动力储能式截瘫助行外骨骼弹簧刚度优化[J].清华大学学报(自然科学版),2017,57(11):1179-1184. doi: 10. 16511/j.cnki.qhdxxb.2017.21.035 GUANXin-yu, JILin-hong, WANGRen-cheng. Optimization of an unpowered energy-stored exoskeleton spring stiffness for spinal cord injuries[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(11): 1179-1184.
[16] 李卓. 人体下肢动力学建模与行走步态分析[D].武汉:华中科技大学机械科学与工程学院,2018:11-24. LIZhuo. A study on human lower-limb dynamics modeling and walking gait analysis[D]. Wuhan: Huazhong University of Science & Technology, School of Mechanical Science and Engineering, 2018: 11-24.
[17] APKARIANJ, NAUMANNS, CAIRNSB. A three-dimensional kinematic and dynamic model of the lower limb[J]. Journal of Biomechanics, 1989, 22(2): 143-155. doi: 10.1016/0021-9290(89) 90037-7
[18] 汤运启, 秦蕾, 罗向东. 鞋跟高度对青年女性足底压力舒适性影响的研究[J].中国皮革,2011, 40(4):106-107,111. doi:10.13536/j.cnki.issn1001-6813.2011.04.027 TANGYun-qi, QINLei, LUOXiang-dong. Research on the impact of heel on plantar pressure comfortableness of young ladies[J]. Chinese Leather, 2011, 40(4): 106-107, 111.
[1] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chinese Journal of Engineering Design, 2022, 29(1): 20-27.
[2] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
[3] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[4] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[5] MA Wei-zhen, HU Teng, ZHENG Hua-ling, LI Tian. Identification of dynamics behavior differentiation characteristics of machine tool tip under spindle running operation[J]. Chinese Journal of Engineering Design, 2021, 28(6): 694-700.
[6] YANG Shi-xiang, LI Wen-qiang. Innovation design of sealing structure of incineration ash treatment equipment[J]. Chinese Journal of Engineering Design, 2021, 28(6): 679-686.
[7] NI Wei-yu, ZHANG Heng, YAO Sheng-wei. Lightweight design of automobile seat frame based on multiple working conditions[J]. Chinese Journal of Engineering Design, 2021, 28(6): 729-736.
[8] ZHAO Bo, ZHAO Hai-ming, LIU Chen, HU Gang. Parametric design and optimization of suspended mining head for deep-sea cobalt crust[J]. Chinese Journal of Engineering Design, 2021, 28(5): 559-568.
[9] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[10] GAO Xiang, WANG Lin-jun, DU Yi-xian, LI Xiang, XU Liu. Fuzzy optimization design based on cloud model artificial fish swarm algorithm[J]. Chinese Journal of Engineering Design, 2021, 28(4): 433-442.
[11] YE Jin-tao, LIU Feng-li, HAO Yong-ping, LIU Shuang-jie, GUO Meng-hui, FENG Zhuo-hang. Design and analysis of a bionic flapping wing aircraft flying at ultra-low altitude[J]. Chinese Journal of Engineering Design, 2021, 28(4): 473-479.
[12] CAO En-guo, WANG Gang, WANG Kun, GAO Yang. Evaluation of walking aid effectiveness of exoskeleton driven by elastic device[J]. Chinese Journal of Engineering Design, 2021, 28(4): 480-488.
[13] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[14] ZHANG Ze, CHEN Yong, LI Guang-xin, LEI Yong-gan, RUAN Ou, WANG Zai-zhou. Design and structure optimization of electro-hydraulic control system assembly of electric vehicle transmission[J]. Chinese Journal of Engineering Design, 2021, 28(3): 335-343.
[15] BAI Yang-xi, CHEN Hong-yue, CHEN Hong-yan, WANG Xin, LI Jian-gang. Vibration analysis and experimental verification of shearer sliding shoes based on drum load[J]. Chinese Journal of Engineering Design, 2021, 28(3): 358-366.