Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (5): 634-645    DOI: 10.3785/j.issn.1006-754X.2025.05.107
Robotic and Mechanism Design     
Design and analysis of a variable-diameter multi-mode mobile parallel robot
Yuhang LIU(),Chunyan ZHANG(),Zhengyu TIAN,Zhengyang LIU
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
Download: HTML     PDF(6776KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of insufficient folding and unfolding ability and multi-mode adaptability of mobile robots in complex unstructured environments, a variable-diameter multi-mode mobile parallel robot composed of a variable-diameter platform and a 4-URU parallel mechanism is proposed. Firstly, a variable-diameter platform with multiple radial telescopic rods was designed based on the cam mechanism characteristics, and its structure and force characteristics were analyzed. Then, combining the telescopic characteristics of the variable-diameter platform, a multi-mode mobile parallel robot was constructed with the 4-URU parallel mechanism as the main body. The degrees of freedom of the 4-URU parallel mechanism were analyzed by spiral theory, and the degrees of freedom and switching methods under different motion modes were obtained. On this basis, the ZMP (zero moment point) theory was used to evaluate the stability of the robot in various modes. Finally, the obstacle-crossing performance and stability of the robot in narrow-slit crossing, single-loop rolling and dual-wheel obstacle crossing modes were verified through ADAMS simulation and prototype experiments. The results show that the designed mobile parallel robot has good folding and unfolding ability and multi-mode adaptability, which can provide a new solution for the design and application of multi-functional mobile robots in complex environments.



Key wordsfolding and unfolding ability      multi-mode      mobile parallel robot      ADAMS simulation     
Received: 17 January 2025      Published: 31 October 2025
CLC:  TH 112  
Corresponding Authors: Chunyan ZHANG     E-mail: qcsjlyh@163.com;cyzhang@sues.edu.cn
Cite this article:

Yuhang LIU,Chunyan ZHANG,Zhengyu TIAN,Zhengyang LIU. Design and analysis of a variable-diameter multi-mode mobile parallel robot. Chinese Journal of Engineering Design, 2025, 32(5): 634-645.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.107     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I5/634


一种可变径多模式移动并联机器人的设计与分析

针对复杂非结构化环境下移动机器人的折展能力与多模式适应性不足的问题,提出了一种由可变径平台和4-URU并联机构组成的可变径多模式移动并联机器人。首先,基于凸轮机构的特性设计了由多根径向伸缩杆组成的可变径平台,并分析了其结构与受力特性。然后,结合可变径平台的伸缩特性,以4-URU并联机构为主体构建了多模式移动并联机器人,并基于螺旋理论对4-URU并联机构的自由度进行了分析,得到了不同运动模式下的自由度及切换方法。在此基础上,采用ZMP(zero moment point,零力矩点)理论对机器人在各模式下的稳定性进行了评估。最后,通过ADAMS仿真和样机实验验证了机器人在窄缝穿越、单环滚动及双轮越障等模式下的越障性能与稳定性。结果表明,所设计的移动并联机器人兼具良好的折展能力与多模式适应性,可为复杂环境下多功能移动机器人的设计与应用提供新思路。


关键词: 折展能力,  多模式,  移动并联机器人,  ADAMS仿真 
Fig.1 Schematic of variable-diameter platform
Fig.2 Force conditions of different numbers of telescopic rods in two types of spaces
Fig.3 Schematic of partial amplification of variable-diameter platform
Fig.4 Movement trajectory change of telescopic rod
Fig.5 Variable-diameter multi-mode mobile parallel robot
Fig.6 Schematic diagram of robot multi-mode switching
Fig.7 Diagram of 4-URU parallel mechanism
Fig.8 Spiral analysis of URU branch chain
运动模式运动螺旋约束螺旋自由度运动性质
窄缝穿越模式$11=001;000$12=100;000$13=100;0e3f3$14=100;0e4f4$15=001;d5e50$1r=000;100$2r=000;0104沿XYZ轴的移动和绕Z轴的转动
单环滚动模式$11=100;000$12=100;0b2c2$13=100;0b3c3$14=100;000$1r=100;000$2r=000;010$3r=000;0013沿X轴的移动和绕YZ轴的转动
双轮越障模式1X轴转动
Table 1 Degrees of freedom of 4-URU parallel mechanism in different modes
Fig.9 Folding and unfolding principle of variable-diameter platform
Fig.10 Folding and unfolding principle of URU branch chain
Fig.11 Schematic diagram of volume envelope of robot in the retraction and extension states
Fig.12 Variation curve of folding-to-unfolding ratio of robot
Fig.13 Narrow-slit crossing gait of robot
Fig.14 Kinematic model of single-loop rolling mode
Fig.15 Single-loop rolling gait of robot
Fig.16 Dual-wheel obstacle-crossing gait of robot
Fig.17 Distribution diagram of drive motors in robot
运动模式窄缝穿越模式单环滚动模式双轮越障模式
电机状态
Table 2 Drive motor status under different modes
Fig.18 Motion tendency of robot centroid under different modes
Fig.19 Projection of robot centroid under single-loop rolling mode
参数数值
接触刚度/(N/mm)10 000
静摩擦因数0.4
动摩擦因数0.3
碰撞力指数1.5
最大穿透深度/mm0.1
Table 3 Environment-related parameters
Fig.20 Narrow-slit crossing simulation result of robot
Fig.21 Displacement curve of upper platform centroid of robot under narrow-slit crossing mode
Fig.22 Single-loop rolling simulation result of robot
Fig.23 Displacement curve of robot centroid under single-loop rolling mode
Fig.24 Dual-wheel obstacle-crossing simulation result of robot
Fig.25 Displacement curve of robot centroid under dual-wheel obstacle-crossing mode
Fig.26 Robot prototype
参数属性和数值
整机尺寸/(mm×mm×mm)200×200×450
整机质量/kg2.35
材料PLA、铝合金、不锈钢
工作电压/V3.3(伺服舵机)、8(减速电机)
Table 4 Basic parameters of robot prototype
Fig.27 Robot control system block diagram
Fig.28 Experiment on narrow-slit crossing mode of robot
Fig.29 Experiment on single-loop rolling mode of robot
Fig.30 Experiment on dual-wheel obstacle-crossing mode of robot
 
 
[[1]]   ZHAI G D, ZHANG W T, HU W Y, et al. Coal mine rescue robots based on binocular vision: a review of the state of the art[J]. IEEE Access, 2020, 8: 130561-130575.
[[2]]   HU J H. Development and review of group rescue robots based on artificial intelligence technology[J]. Advances in Engineering Technology Research, 2023, 9(1): 613.
[[3]]   唐超权, 佟秉航, 唐玮, 等. 矿用钢丝绳捻向攀爬轮式巡检机器人设计[J]. 中国机械工程, 2024, 35(10): 1732-1739.
TANG C Q, TONG B H, TANG W, et al. Design of twisting climbing wheeled inspection robot for mining wire ropes[J]. China Mechanical Engineering, 2024, 35(10): 1732-1739.
[[4]]   JING G Q, QIN X Y, WANG H Y, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242.
[[5]]   张元勋, 黄泽东, 韩亮亮, 等. 适用于月面极端地形的爬-滚机器人设计及爬行滚动特性分析[J]. 机械工程学报, 2021, 57(3): 35-48. doi:10.3901/jme.2021.03.035
ZHANG Y X, HUANG Z D, HAN L L, et al. Design and analysis of the crawling and rolling characteristics of the crawling and rolling robot for the lunar extreme terrain[J]. Journal of Mechanical Engineering, 2021, 57(3): 35-48.
doi: 10.3901/jme.2021.03.035
[[6]]   TENNAKOON E, PEYNOT T, ROBERTS J, et al. Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse[C]//2020 IEEE International Conference on Robotics and Automation. Paris, May 31-Aug. 31, 2020.
[[7]]   刘毅, 丰宗强, 刘洋, 等. 轮式并联调姿机器人冗余控制策略研究[J]. 农业机械学报, 2022, 53(10): 423-435.
LIU Y, FENG Z Q, LIU Y, et al. Investigation on wheeled parallel pose-tuning robot redundant control strategy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 423-435.
[[8]]   褚宏鹏, 祁柏, 王慧奇, 等. 六自由度轮式并联机器人及其构型方法[J]. 机械工程学报, 2023, 59(3): 46-53. doi:10.3901/jme.2023.03.046
CHU H P, QI B, WANG H Q, et al. 6-DOF wheeled parallel robot and its design method[J]. Journal of Mechanical Engineering, 2023, 59(3): 46-53.
doi: 10.3901/jme.2023.03.046
[[9]]   孙建伟, 李维佳, 褚金奎. 基于张拉整体结构的仿生腿式机器人设计[J]. 机器人, 2023, 45(3): 302-312.
SUN J W, LI W J, CHU J K. Design of a bionic legged robot based on tensegrity structure[J]. Robot, 2023, 45(3): 302-312.
[[10]]   黄华, 王虎林, 王庆粉, 等. 一种基于行星履带轮越障与混合双吸附补偿的爬壁机器人的设计与研究[J]. 机器人, 2022, 44(4): 471-483.
HUANG H, WANG H L, WANG Q F, et al. Design and study on a wall-climbing robot based on planetary gear track obstacle-surmounting and hybrid double adsorption compensation[J]. Robot, 2022, 44(4): 471-483.
[[11]]   刘超, 巢鑫迪, 姚燕安. 多模式空间6R地面移动机构[J]. 机械工程学报, 2019, 55(23): 38-47. doi:10.3901/jme.2019.23.038
LIU C, CHAO X D, YAO Y A. Multi-mode spatial 6R ground mobile mechanism[J]. Journal of Mechanical Engineering, 2019, 55(23): 38-47.
doi: 10.3901/jme.2019.23.038
[[12]]   PING A, ZHANG C Y, YANG J. Design and kinematic analysis of new multi-mode mobile parallel mechanism with deployable platform[J]. Industrial Robot: The International Journal of Robotics Research and Application, 2022, 49(5): 885-902.
[[13]]   ZHANG C Y, DING B, ZHU J Y, et al. Analysis of structure and movement characteristics of a pipeline parallel mechanism[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2024, 48(2): 675-689.
[[14]]   MICHAUD F, LÉTOURNEAU D, ARSENAULT M, et al. Multi-modal locomotion robotic platform using leg-track-wheel articulations[J]. Autonomous Robots, 2005, 18(2): 137-156.
[[15]]   陈致, 张春燕, 蒋新星, 等. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
CHEN Z, ZHANG C Y, JIANG X X, et al. Design and analysis of a reconfigurable spatial open/closed chain 6R mobile parallel mechanism[J]. Chinese Journal of Engineering Design, 2021, 28(4): 511-520.
[[16]]   LI Y Z, YAO Y A, HE Y Y. Design and analysis of a multi-mode mobile robot based on a parallel mechanism with branch variation[J]. Mechanism and Machine Theory, 2018, 130: 276-300.
[[17]]   张春燕, 江毅文, 杨杰, 等. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
ZHANG C Y, JIANG Y W, YANG J, et al. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 189-199.
[[18]]   HE J, SUN Y L, YANG L M, et al. Design and control of TAWL: a wheel-legged rover with terrain-adaptive wheel speed allocation capability[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 2212-2223.
[[19]]   WANG S, CUI L L, ZHANG J F, et al. Balance control of a novel wheel-legged robot: design and experiments[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an, May 30-Jun. 5, 2021.
[[20]]   韩秀英, 李旭莹, 凌金博, 等. 一种新型3-RRPU并联机构的运动学及鲁棒控制研究[J]. 机电工程, 2024, 41(8): 1464-1471.
HAN X Y, LI X Y, LING J B, et al. Kinematics and robust control of a novel 3-RRPU parallel mechanism[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(8): 1464-1471.
[1] LU Qing-hua, HUANG Ming-xian, CHEN Wei-lin. Multi-mode parametric optimization design of planar damped underactuated gripper[J]. Chinese Journal of Engineering Design, 2018, 25(6): 690-696.
[2] LIU Juan-xiu, WU Yi-fei, GUO Jian, LI Rui, CHEN Qing-wei. Modeling and simulation analysis of a walking assistant robot for both plane and stair[J]. Chinese Journal of Engineering Design, 2015, 22(5): 344-350.
[3] HE Hong-lin, ZHOU Nan-lan, YUAN Wei-dong. Evolutionary topology optimization of damped plates based on multiple modes’ damping ratio[J]. Chinese Journal of Engineering Design, 2015, 22(5): 351-358.
[4] HE Hong-lin, ZHOU Nan-lan, YUAN Wei-dong. Evolutionary topology optimization of damped plates based on multiple modes damping ratio[J]. Chinese Journal of Engineering Design, 2015, 22(4): 351-358.
[5] LIU Juan-xiu, WU Yi-fei, GUO Jian, LI Rui, CHEN Qing-wei. Modeling and simulation analysis of a walking assistant robot for both plane and stair[J]. Chinese Journal of Engineering Design, 2015, 22(4): 344-350.