Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 309-318    DOI: 10.3785/j.issn.1006-754X.2024.03.181
Robotic and Mechanism Design     
Multi-gait planning and dynamics analysis of quadruped bionic mobile robot inspired by turtle crawling and goat walking
Hongbin RUI(),Tianci WANG,Longlin SHE(),Kaiwen DUAN,Lei LI,Xuan GUO,Jiaxuan PENG
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Download: HTML     PDF(6090KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problems of slow movement, poor environmental adaptability and single gait of rescue robots, a quadruped bionic mobile robot was designed according to the physiological structure of turtle and goat. Firstly, according to the characteristics of turtle crawling on soft ground and goat's strong movement ability, two gaits imitating turtle crawling and goat walking were planned for the robot to adapt to different environments and improve the robot's movement performance. Then, the dynamics analysis for the robot outrigger was carried out, and the quantitative relationship between the robot joint torque and motion performance parameters was obtained by establishing a dynamics model. Finally, the feasibility of the robot's gait and the robot's adaptability to the environment were verified by simulation and prototype experiments. The results showed that the designed robot had stable structure and reasonable gait planning, which could adapt to different complex terrains. The research results can provide important reference for the design and development of bionic robots.



Key wordsbionic mobile robot      multi-gait planning      dynamics     
Received: 19 June 2023      Published: 27 June 2024
CLC:  TH 113  
Corresponding Authors: Longlin SHE     E-mail: Hongbin.rui@126.com;3518917365@qq.com
Cite this article:

Hongbin RUI,Tianci WANG,Longlin SHE,Kaiwen DUAN,Lei LI,Xuan GUO,Jiaxuan PENG. Multi-gait planning and dynamics analysis of quadruped bionic mobile robot inspired by turtle crawling and goat walking. Chinese Journal of Engineering Design, 2024, 31(3): 309-318.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.181     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/309


受海龟爬行与山羊行走启发的四足仿生移动机器人多步态规划及动力学分析

为解决救援机器人运动速度慢、环境适应性差和步态单一等问题,参照海龟与山羊的生理结构,设计了一种四足仿生移动机器人。首先,根据海龟能在松软地面上爬行以及山羊运动能力强的特点,为机器人规划了仿海龟爬行和仿山羊行走两种步态以适应不同环境,提高了机器人的运动性能。然后,对机器人支腿进行了动力学分析,通过建立动力学模型来获取机器人关节扭矩与运动性能参数之间的定量关系。最后,通过仿真和样机实验来验证机器人步态的可行性以及机器人的环境适应能力。结果表明,所设计的机器人结构稳定,步态规划合理,可适应不同的复杂地形。研究结果可为仿生机器人的设计与开发提供重要参考。


关键词: 仿生移动机器人,  多步态规划,  动力学 
Fig.1 Topology structure of robot imitating turtle
Fig.2 Topology structure of robot imitating goat
Fig.3 Topology structure of quadruped bionic mobile robot
Fig.4 Overall structure of quadruped bionic mobile robot
参数数值

机身尺寸(长×宽×高)/

(mm×mm×mm)

爬行姿态:530×320×75

行走姿态:480×130×190

转腿长度/mm30
大腿长度/mm100
小腿长度/mm100
沼泽轮尺寸(直径×厚度)/(mm×mm)50×15
整机质量/kg2.8
Table 1 Structural parameters of quadruped bionic mobile robot
Fig.5 Crawling gait of turtle in nature
Fig.6 Turtle-imitated crawling gait of quadruped bionic mobile robot
Fig.7 Walking gait of goat in nature
Fig.8 Goat-imitated walking gait of quadruped bionic mobile robot
Fig.9 Dynamics analysis model of outrigger
Fig.10 Technical route for simulation verification of outrigger dynamics model
Fig.11 Comparison of hip joint torque under goat-imitated walking gait
Fig.12 Comparison of knee joint torque under goat-imitated walking gait
Fig.13 Simulation result of turtle-imitated crawling gait of quadruped bionic mobile robot
Fig.14 Displacement curves of fuselage center of mass under turtle-imitated crawling gait
Fig.15 Velocity curves of fuselage center of mass under turtle-imitated crawling gait
Fig.16 Force on fuselage and foot end under turtle-imitated crawling gait
Fig.17 Change curve of rotation angle of each joint under turtle-imitated crawling gait
Fig.18 Simulation result of goat-imitated walking gait of quadruped bionic mobile robot
Fig.19 Displacement curves of fuselage center of mass under goat-imitated walking gait
Fig.20 Velocity curves of fuselage center of mass under goat-imitated walking gait
Fig.21 Change curve of rotation angle of each joint under goat-imitated walking gait
Fig.22 Turtle-imitated crawling experiment site of quadruped bionic mobile robot
Fig.23 Goat-imitated walking experiment site of quadruped bionic mobile robot
Fig.24 Pitch angle of fuselage under goat-imitated walking gait
Fig.25 Transverse roll angle of fuselage under goat-imitated walking gait
Fig.26 Lateral deflection angle of fuselage under goat-imitated walking gait
[1]   程书波,李冲.基于知识图谱的我国自然灾害防治现状及趋势分析[J].中国防汛抗旱,2023,33(4):54-60.
CHENG S B, LI C. Current situation and trend analysis of natural disaster prevention in China based on knowledge graph[J]. China Flood & Drought Management, 2023, 33(4): 54-60.
[2]   冯飞.群策群力协同推进加快发展我国应急产业[J].中国应急管理,2015(11):58-59.
FENG F. Work together to accelerate the development of China's emergency industry[J]. China Emergency Management, 2015(11): 58-59.
[3]   喇蕊芳,薛芳明,白鹏飞,等.基于“情景-任务”的重特大地质灾害救援装备调配优化[J].安全与环境学报,2023,23(5):1568-1578.
LA R F, XUE F M, BAI P F, et al. Optimizing the rescue equipment allocation of major geological disasters based on “scenario-task”[J]. Journal of Safety and Environment, 2023, 23(5): 1568-1578.
[4]   李管良,陆强,王富尧,等.发展高效救援处置装备提高消防安全治理成效[J].中国应急管理,2022(6):78-81.
LI G L, LU Q, WANG F Y, et al. Development of efficient rescue and disposal equipment to improve the effectiveness of fire safety governance[J]. China Emergency Management, 2022(6): 78-81.
[5]   蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000,11(1/2):58-60. doi:10.3321/j.issn:1004-132X.2000.01.015
CAI H G. Robot will be a hot spot of technological development in the twenty first century[J]. China Mechanical Engineering, 2000, 11(1/2): 58-60.
doi: 10.3321/j.issn:1004-132X.2000.01.015
[6]   赵海朋,张凌燕.“十四五”时期我国机器人产业发展关键在于做好三个“关键”[J].机器人产业,2022(2):12-16.
ZHAO H P, ZHANG L Y. The key to the development of China's robot industry during the“14th Five Year Plan” period lies in doing well in three “keys”[J]. Robot Industry, 2022(2): 12-16.
[7]   KAWAMUR Y, SHIMOYA J, YOSHIDA E, et al. Design and development of amphibious robot with fin actuators[J]. International Journal of Offshore and Polar Engineering, 2010, 20(3): ISOPE-10-20-3-175.
[8]   CHEN J P, SAN H J, WU X, et al. Structural design and gait research of a new bionic quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021(5): 1-11.
[9]   李满宏,张明路,张建华,等.基于增强学习的六足机器人自由步态规划[J].机械工程学报,2019,55(5):36-44. doi:10.3901/jme.2019.05.036
LI M H, ZHANG M L, ZHANG J H, et al. Free gait planning for a hexapod robot based on reinforcement learning[J]. Journal of Mechanical Engineering, 2019, 55(5): 36-44.
doi: 10.3901/jme.2019.05.036
[10]   丁良宏.BigDog四足机器人关键技术分析[J].机械工程学报,2015,51(7):1-23. doi:10.3901/jme.2015.07.001
DING L H. Key technology analysis of BigDog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51(7): 1-23.
doi: 10.3901/jme.2015.07.001
[11]   张铭钧,刘晓白,徐建安,等.海龟柔性前肢仿生推进研究[J].机器人,2011,33(1):229-236. doi:10.3724/sp.j.1218.2011.00229
ZHANG M J, LIU X B, XU J A, et al. Bionic research on turtle's flexible forelimb propulsion[J]. Robot, 2011, 33(1): 229-236.
doi: 10.3724/sp.j.1218.2011.00229
[12]   张兵,郑彦宁,徐文福,等.基于舞台表演用海龟机器人四足协调步态规划[J].仪器仪表学报,2017,38(3):545-551. doi:10.3969/j.issn.0254-3087.2017.03.005
ZHANG B, ZHENG Y N, XU W F, et al. Coordinated quadrupedal gait planning of turtle robot for performing at digital stage[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 545-551.
doi: 10.3969/j.issn.0254-3087.2017.03.005
[13]   芮宏斌,李路路,王天赐,等.两栖仿海龟机器人动力学建模与运动控制研究[J].工程设计学报,2023,30(1):73-81. doi:10.3785/j.issn.1006-754X.2023.00.007
RUI H B, LI L L, WANG T C, et al. Research on dynamic modeling and motion control of amphibious turtle inspired robot[J]. Chinese Journal of Engineering Design, 2023, 30(1): 73-81.
doi: 10.3785/j.issn.1006-754X.2023.00.007
[14]   芮宏斌,李路路,曹伟.两栖仿海龟机器人步态规划及分析[J].机械科学与技术,2023,42(1):46-52.
RUI H B, LI L L, CAO W. Gait planning and analysis of amphibious turtle inspired robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 46-52.
[15]   王明昊,汪满新.一种新型五自由度混联机器人动力学建模与性能评价[J].机械工程学报,2023,59(9):63-75. doi:10.3901/jme.2023.09.063
WANG M H, WANG M X. Dynamic modeling and performance evaluation of a new five-DOF hybrid robot[J]. Journal of Mechanical Engineering, 2023, 59(9): 63-75.
doi: 10.3901/jme.2023.09.063
[16]   张冬冬,江一行,范云杰,等.基于仿生水母的水下机器人结构设计与试验研究[J].机电工程,2024,41(4):739-746. doi:10.3969/j.issn.1001-4551.2024.04.020
ZHANG D D, JIANG Y H, FAN Y J, et al. Structural design and experimental study of underwater robots based on biomimetic jellyfish[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(4): 739-746.
doi: 10.3969/j.issn.1001-4551.2024.04.020
[17]   孟健,李贻斌,李彬.四足机器人对角小跑步态全方位移动控制方法及其实现[J].机器人,2015,37(1):74-84.
MENG J, LI Y B, LI B. Control method and its implementation of quadruped robot in omni-directional trotting gait[J]. Robot, 2015, 37(1): 74-84.
[18]   张楠,姜文通,牛宝山,等.轮腿式自动引导小车结构设计与行走步态规划[J].机械科学与技术,2021,40(2):211-217.
ZHANG N, JIANG W T, NIU B S, et al. Structural design and walking gait planning of wheel-legged AGV[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 211-217.
[19]   韩清凯,罗忠.机械系统多体动力学分析、控制与仿真[M].北京:科学出版社,2010:8-28.
HAN Q K, LUO Z. Multi-body dynamics analysis, control and simulation of mechanical systems[M]. Beijing: Science Press, 2010: 8-28.
[20]   李加启.高速四足机器人液压支腿动力学分析及运动 控制[D].哈尔滨:哈尔滨工业大学,2019:22-61.
LI J Q. Dynamic analysis and motion control of hydraulic leg in high speed quadruped robot[D]. Harbin: Harbin Institute of Technology, 2019: 22-61.
[1] Wenbin MA,Zhiwen DUAN,Xiang LI,Hang ZHANG. Study on submarine pipeline suspension internal detection based on vibration response analysis[J]. Chinese Journal of Engineering Design, 2024, 31(3): 348-356.
[2] Min SUN,Fengyuan LU,Yuxuan ZHAO,Qingchun WANG,Zhongjia CHEN. Study on influence of air supply parameters on temperature and humidity field inside aging chamber[J]. Chinese Journal of Engineering Design, 2024, 31(3): 357-367.
[3] Wangcheng CAO,Jiaxuan HAN,Tingqiang YAO. Dynamic optimization design of internal toothed toothed slewing bearing based on parametric multi-body dynamic model[J]. Chinese Journal of Engineering Design, 2024, 31(2): 168-177.
[4] Kaike YANG,Junpeng LUO,Wenjing MA,Yuanchao GENG,Deen WANG,Qiang YUAN. Research on dynamics simulation and optimization method for high-bandwidth unimorph piezoelectric deformable mirror[J]. Chinese Journal of Engineering Design, 2024, 31(1): 130-136.
[5] Miao XIE,Junjie SHI,Hongyu ZHANG,Yun ZHU. Prediction of longitudinal vibration characteristics of new vertical-axis roadheader under multiple excitation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 728-737.
[6] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[7] Hongyue CHEN,Minghang CAI,Xinwei YANG,Zhonghuan DAI. Structure and dynamics analysis of special manipulator frame for replacing wire rope of electric shovel[J]. Chinese Journal of Engineering Design, 2023, 30(5): 590-600.
[8] Guiliang CHEN,Zihao LI,Chao CAI,Yongchao LI,Dong YANG. Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis[J]. Chinese Journal of Engineering Design, 2023, 30(3): 362-371.
[9] Hongtai XIE,Hong WANG,Wei CHAI. Design and simulation analysis of new wind resistance braking device for high-speed trains[J]. Chinese Journal of Engineering Design, 2023, 30(2): 244-253.
[10] Weijie DUAN,Huibin QIN,Rong LIU,Zhongyi LI,Shaoping BAI. Design and performance analysis of reconfigurable variable stiffness compliant actuator[J]. Chinese Journal of Engineering Design, 2023, 30(2): 262-270.
[11] Hong-bin RUI,Lu-lu LI,Tian-ci WANG,Kai-wen DUAN. Research on dynamic modeling and motion control of amphibious turtle inspired robot[J]. Chinese Journal of Engineering Design, 2023, 30(1): 73-81.
[12] Yao ZHANG,Xiao-hua ZHU,Liang-liang DONG. Research on rubber damping flexible fixture for weakly rigid casing[J]. Chinese Journal of Engineering Design, 2022, 29(5): 587-594.
[13] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(4): 474-483.
[14] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[15] MA Wei-zhen, HU Teng, ZHENG Hua-ling, LI Tian. Identification of dynamics behavior differentiation characteristics of machine tool tip under spindle running operation[J]. Chinese Journal of Engineering Design, 2021, 28(6): 694-700.