Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 357-367    DOI: 10.3785/j.issn.1006-754X.2024.03.205
Reliability and Quality Design     
Study on influence of air supply parameters on temperature and humidity field inside aging chamber
Min SUN(),Fengyuan LU,Yuxuan ZHAO,Qingchun WANG,Zhongjia CHEN()
School of Technology, Beijing Forestry University, Beijing 100083, China
Download: HTML     PDF(3199KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Using aging chamber to screen mechanical and electronic components can effectively improve the reliability of products. The uniformity of the temperature and humidity field inside the aging chamber determines its overall performance, which has a crucial impact on the functionality of the aging chamber. With the goal of enhancing the performance of the aging chamber, the simulation was conducted on the simplified model of aging chamber by using CFD (computational fluid dynamics) software based on the fluid dynamics principle. According to the simulation results, the distribution of velocity field and temperature field inside the aging chamber was determined to optimize the air supply scheme under the combination of different air supply temperature, air supply speed and air supply angle. The orthogonal test method was adopted in the simulation test, with air supply temperature, air supply speed and air supply angle as test factors, and energy utilization coefficient, temperature non-uniformity coefficient and relative humidity non-uniformity coefficient as evaluation indexes. Through range and variance analysis of simulation results, it could be seen that the influence of air supply angle on energy utilization coefficient was the most significant, and the influence of air supply temperature on temperature non-uniformity coefficient and relative humidity non-uniformity coefficient was the most significant. For the three evaluation indexes, three optimal schemes were obtained: air supply temperature of 90 ℃, air supply speed of 10 m/s, air supply angle of 0°, air supply temperature of 90 ℃, air supply speed of 12 m/s, air supply angle of -10°, and air supply temperature of 90 ℃, air supply speed of 8 m/s, air supply angle of 0°. Finally, the temperature and humidity measurement experiment inside the aging chamber was carried out and compared with the simulation results. The results showed that the relative errors between the simulation results and the experimental results were small and within a reasonable range, which verified the reliability and effectiveness of the simulation test. The research is oriented to improve the performance and energy utilization of aging chamber, which can provide reference for the design of similar aging chambers and the setting of air supply parameters.



Key wordscomputational fluid dynamics      aging chamber      air supply parameter      orthogonal test      non-uniformity coefficient     
Received: 16 October 2023      Published: 27 June 2024
CLC:  TH 17  
Corresponding Authors: Zhongjia CHEN     E-mail: 1061758591@qq.com;chenzhongjia@bjfu.edu.cn
Cite this article:

Min SUN,Fengyuan LU,Yuxuan ZHAO,Qingchun WANG,Zhongjia CHEN. Study on influence of air supply parameters on temperature and humidity field inside aging chamber. Chinese Journal of Engineering Design, 2024, 31(3): 357-367.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.205     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/357


送风参数对老化箱内部温湿度场的影响研究

利用老化箱对机械电子元件进行老化筛选,能有效提高产品的可靠性。老化箱内部温湿度场的均匀性决定了其整体性能,这对老化箱功能有至关重要的影响。为了提高老化箱的性能,基于流体力学原理,利用CFD(computational fluid dynamics,计算流体力学)仿真软件对老化箱简化模型进行仿真模拟,并根据仿真结果确定老化箱内部速度场与温度场的分布情况,以优选不同送风温度、送风速度和送风角度组合下的送风方案。仿真试验采用正交试验法,以送风温度、送风速度和送风角度为试验因素,以能量利用系数、温度不均匀系数和相对湿度不均匀系数为评价指标。通过对仿真试验结果进行极差和方差分析可知,送风角度对能量利用系数的影响最显著,送风温度对温度不均匀系数和相对湿度不均匀系数的影响最显著。针对3个评价指标,得到3种最优方案:送风温度为90 ℃、送风速度为10 m/s、送风角度为0°,送风温度为90 ℃、送风速度为12 m/s、送风角度为-10°,以及送风温度为90 ℃、送风速度为8 m/s、送风角度为0°。最后,开展了老化箱内部温湿度测量实验,并与仿真结果进行了对比。结果表明,仿真结果与实验结果的相对误差较小,均在合理范围内,验证了仿真试验的可靠性和有效性。研究以提高老化箱性能和能量利用率为导向,可为同类老化箱的设计及其送风参数的设置提供参考。


关键词: 计算流体力学,  老化箱,  送风参数,  正交试验,  不均匀系数 
水平因素

A(送风温度)/

B(送风速度)/(m/s)C(送风角度)/(o)
1508-10
270100
3901210
Table 1 Factor and level table for orthogonal test of air supply parameters of aging chamber
序号因素方案
A/℃B/(m/s)C/(o)
1508-10A1B1C1
250100A1B2C2
3501210A1B3C3
47080A2B1C2
5701010A2B2C3
67012-10A2B3C1
790810A3B1C3
89010-10A3B2C1
990120A3B3C2
Table 2 Orthogonal test scheme of air supply parameters of aging chamber
Fig.1 Working principle of aging chamber
Fig.2 Simplified 3D model of aging chamber
Fig.3 Grid division of aging chamber 3D model
Fig.4 Streamline diagram of horizontal plane at a distance of 600 mm from bottom inside aging chamber
Fig.5 Temperature cloud map of horizontal plane at a distance of 600 mm from bottom inside aging chamber
序号方案能量利用系数温度不均匀系数相对湿度不均匀系数
1A1B1C10.909 60.077 10.125 2
2A1B2C21.058 60.078 80.119 7
3A1B3C31.045 00.080 20.127 5
4A2B1C21.028 10.054 30.104 8
5A2B2C31.029 10.054 10.106 4
6A2B3C10.938 80.050 90.106 8
7A3B1C31.061 90.040 20.092 0
8A3B2C10.983 40.038 80.098 7
9A3B3C21.051 30.039 50.099 0
Table 3 Performance evaluation indexes of aging chamber under different air supply schemes
分析指标因素A因素B因素C
K13.013 22.999 62.831 8
K22.996 03.071 13.138 0
K33.096 63.035 13.136 0
k11.004 40.999 90.943 9
k20.998 71.023 71.046 0
k31.032 21.011 71.045 3
R0.033 50.023 80.102 1
优水平A3B2C2
Table 4 Range analysis results of influence of each factor on energy utilization coefficient of aging chamber
Fig.6 Level diagram of influencing factors of energy utilization coefficient of aging chamber
分析指标因素A因素B因素C
K10.236 10.171 60.166 8
K20.159 30.171 70.172 6
K30.118 50.170 60.174 5
k10.078 70.057 20.055 6
k20.053 10.057 20.057 5
k30.039 50.056 90.058 2
R0.039 20.000 30.002 6
优水平A3B3C1
Table 5 Range analysis results of influence of each factor on temperature non-uniformity coefficient of aging chamber
Fig.7 Level diagram of influencing factors of temperature non-uniformity coefficient of aging chamber
分析指标因素A因素B因素C
K10.372 40.322 00.330 7
K20.318 00.324 80.323 5
K30.289 70.333 30.325 9
k10.124 10.107 30.110 2
k20.106 00.108 30.107 8
k30.096 60.111 10.108 6
R0.027 50.003 80.002 4
优水平A3B1C2
Table 6 Range analysis results of influence of each factor on relative humidity non-uniformity coefficient of aging chamber
Fig.8 Level diagram of influencing factors of relative humidity non-uniformity coefficient of aging chamber
方差来源离差平方和自由度均方P显著性
总和0.024 508 10380.012 254 051
因素A0.001 930 19620.000 965 0981.881 5720.347 033
因素B0.000 852 05620.000 426 0280.830 5910.546 272
因素C0.020 700 00920.010 350 00420.178 5500.047 218*
误差0.001 025 84220.000 512 921
Table 7 Variance analysis results of influence of each factor on energy utilization coefficient of aging chamber
Fig.9 Contribution rate of each factor to energy utilization coefficient of aging chamber
方差来源离差平方和自由度均方P显著性
总和0.002 390 04180.001 195 019
因素A0.002 376 96020.001 188 4801 128.303 7970.000 886**
因素B0.000 000 24720.000 000 1230.117 0890.895 184
因素C0.000 010 72720.000 005 3635.091 7720.164 156
误差0.000 002 10720.000 001 053
Table 8 Variance analysis results of influence of each factor on temperature non-uniformity coefficient of aging chamber
Fig.10 Contribution rate of each factor to temperature non-uniformity coefficient of aging chamber
方差来源离差平方和自由度均方P显著性
总和0.001 243 42180.000 621 709
因素A0.001 177 72720.000 588 86335.002 7740.027 776*
因素B0.000 023 08720.000 011 5430.686 1500.593 067
因素C0.000 008 96020.000 004 4800.266 2970.789 704
误差0.000 033 64720.000 016 823
Table 9 Variance analysis results of influence of each factor on relative humidity non-uniformity coefficient of aging chamber
Fig.11 Contribution rate of each factor to relative humidity non-uniformity coefficient of aging chamber
Fig.12 Physical drawing of aging chamber and layout of measuring points in chamber
测点送风温度为80 ℃送风温度为90 ℃
实测值仿真值实测值仿真值
I78.676.786.986.5
II77.377.887.087.0
III76.976.188.387.1
IV78.578.687.986.7
V77.278.188.185.8
VI78.777.887.186.7
VII77.678.288.286.8
VIII77.878.087.787.2
IX78.177.587.285.8
X78.876.788.186.5
XI78.478.987.887.0
XII77.978.788.288.1
XIII78.577.887.986.7
Table 10 Comparison of measured and simulated temperature inside aging chamber
测点相对湿度为80%相对湿度为90%
实测值仿真值实测值仿真值
80.381.689.989.4
80.580.590.090.0
80.081.090.090.0
80.281.290.190.4
Table 11 Comparison of measured and simulated relative humidity inside aging chamber
[1]   马超群,张凯,柴麟,等.机械式自动垂直钻具执行机构内部流场规律研究[J].工程设计学报,2022,29(3):384-393. doi:10.3785/j.issn.1006-754X.2022.00.044
MA C Q, ZHANG K, CHAI L, et al. Research on internal flow field law of mechanical automatic vertical drilling tool actuator[J]. Chinese Journal of Engineering Design, 2022, 29(3): 384-393.
doi: 10.3785/j.issn.1006-754X.2022.00.044
[2]   王振文,吴敏,徐新民,等.热泵烘房结构及参数优化仿真设计[J].农业机械学报,2020,51():464-475. doi:10.6041/j.issn.1000-1298.2020.S1.055
WANG Z W, WU M, XU X M, et al. Optimal simulation design of structure and parameter in heat pump drying room[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(): 464-475.
doi: 10.6041/j.issn.1000-1298.2020.S1.055
[3]   曹如玥.基于CFD的蜂箱调温过程数值模拟及实验研究[D].昆明:昆明理工大学,2021.
CAO R Y. Numerical simulation and experimental research of beehive temperature adjustment process based on CFD[D]. Kunming: Kunming University of Science and Technology, 2021.
[4]   林海,叶永伟,陈建,等.基于CFD的汽车车身烘房节能研究[J].机械制造,2010,48(10):71-73. doi:10.3969/j.issn.1000-4998.2010.10.025
LIN H, YE Y W, CHEN J, et al. Research on energy saving of oven for automobile body based on CFD[J]. Machinery, 2010, 48(10): 71-73.
doi: 10.3969/j.issn.1000-4998.2010.10.025
[5]   魏亚兴.矿井通风井巷热交换规律数值试验研究[D].长沙:中南大学,2012.
WEI Y X. Numerical test research on the law of mine ventilation roadway heat exchange[D]. Changsha: Central South University, 2012.
[6]   杜林昕,黄亚宇,查蕾蕾,等.基于CFD的密集式烤房气流均匀性研究[J].农业装备与车辆工程,2021,59(12):126-129. doi:10.3969/j.issn.1673-3142.2021.12.027
DU L X, HUANG Y Y, ZHA L L, et al. Research on air flow uniformity of intensive barn based on CFD[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(12): 126-129.
doi: 10.3969/j.issn.1673-3142.2021.12.027
[7]   LI J X, LI A G, ZHANG C, et al. Analysis and optimization of air distribution and ventilation performance in a generator hall using an innovative attached air supply mode[J]. Building and Environment, 2022, 216: 108993.
[8]   白志鹏.可压缩流体的瓦斯抽采管路流阻计算方法研究[J].煤,2016,25(4):8-11. doi:10.3969/j.issn.1005-2798.2016.04.003
BAI Z P. Study on calculation method of gas drainage pipeline flow resistance of compressible fluid[J]. Coal, 2016, 25(4): 8-11.
doi: 10.3969/j.issn.1005-2798.2016.04.003
[9]   陈忠加,卢丰源,雷雯雯,等.基于强迫对流的热风干燥烘房送风速度及温度优选[J].农业工程学报,2022,38():37-46. doi:10.11975/j.issn.1002-6819.2022.z.005
CHEN Z J, LU F Y, LEI W W, et al. Air velocity and temperature optimization of hot air drying room based on forced convection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 38(Supplement 1): 37-46.
doi: 10.11975/j.issn.1002-6819.2022.z.005
[10]   任塞峰,唐汝宁,李军军.化学分析实验室换气次数数值模拟分析[J].建筑热能通风空调,2021,40(7):70-74. doi:10.3969/j.issn.1003-0344.2021.07.018
REN S F, TANG R N, LI J J. Research on numerical simulation of air exchange rate in chemical analysis laboratory[J]. Building Energy & Environment, 2021, 40(7): 70-74.
doi: 10.3969/j.issn.1003-0344.2021.07.018
[11]   周鹏.高炉风口回旋区燃烧特性的数值模拟研究[D]. 赣州:江西理工大学,2022. doi:10.1016/j.fuel.2021.122490
ZHOU P. Numerical study of combustion characteristics in the raceway of an ironmaking blast furnace[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
doi: 10.1016/j.fuel.2021.122490
[12]   李强,孟利民,周琪,等.基于机械虹膜机构的新型摆动泵及其流场分析[J].机电工程,2023,40(10):1607-1615. doi:10.3969/j.issn.1001-4551.2023.10.017
LI Q, MENG L M, ZHOU Q, et al. Flow characteristics of new swing pump based on mechanical iris mechanism[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(10): 1607-1615.
doi: 10.3969/j.issn.1001-4551.2023.10.017
[13]   吴昊,龙铁明,蓝文清.高低温环境试验箱循环风机优化设计[J].环境技术,2022,40(6):184-190. doi:10.3969/j.issn.1004-7204.2022.06.041
WU H, LONG T M, LAN W Q. Optimization of blower in enviornmental test chamber[J]. Environmental Technology, 2022, 40(6): 184-190.
doi: 10.3969/j.issn.1004-7204.2022.06.041
[14]   高祥,马玫.双轴型热空气交换试验箱的研制[J].合成材料老化与应用,2022,51(4):109-111. doi:10.3969/j.issn.1671-5381.2022.4.hccllhyyy202204035
GAO X, MA M. Development of biaxial hot air exchange test chamber[J]. Synthetic Materials Aging and Application, 2022, 51(4): 109-111.
doi: 10.3969/j.issn.1671-5381.2022.4.hccllhyyy202204035
[15]   陈忠加,雷雯雯,王青春.基于温度和速度均匀性的侧送风烘房设计及仿真[J].农业工程学报,2021,37(19):18-26. doi:10.11975/j.issn.1002-6819.2021.19.003
CHEN Z J, LEI W W, WANG Q C. Design and simulation of side air supply drying room based on temperature and velocity homogeneity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 37(19): 18-26.
doi: 10.11975/j.issn.1002-6819.2021.19.003
[16]   方一鸣.侧送风气流组织设计计算[J].城市建筑,2013(8):268. doi:10.3969/j.issn.1673-0232.2013.08.238
FANG Y M. The design and calculation of side air supply airflow organization[J]. Urbanism and Architecture, 2013(8): 268.
doi: 10.3969/j.issn.1673-0232.2013.08.238
[17]   GUI X L, LUO X B, WANG X P, et al. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS[J]. Heat and Mass Transfer, 2015, 51(12): 1705-1715.
[18]   张伟,严平.热风干燥烘房气流速度场均匀性优化[J].轻工机械,2019,37(1):83-87. doi:10.3969/j.issn.1005-2895.2019.01.016
ZHANG W, YAN P. Optimization of airflow velocity field uniformity in hot air drying kiln[J]. Light Industry Machinery, 2019, 37(1): 83-87.
doi: 10.3969/j.issn.1005-2895.2019.01.016
[19]   李会知,侯孟言,邢金超.单侧供热汽车烘干房气流组织数值模拟研究[J].山东农业大学学报(自然科学版),2021,52(1):84-90. doi:10.3969/j.issn.1000-2324.2021.01.015
LI H Z, HOU M Y, XING J C. Study on numerical simulation for airflow distribution in automotive baking room with a single side heating[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(1): 84-90.
doi: 10.3969/j.issn.1000-2324.2021.01.015
[20]   中国工业机械联合会. 湿热试验箱技术条件: [S].北京:中国标准出版社,2006:1-12.
China Machinery Industry Federation. Specifications for damp heat testing chambers: [S]. Beijing: Standards Press of China, 2006: 1-12.
[1] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[2] ZHENG Ming-jun, ZHAO Chen-lei, WU Wen-jiang, YANG She. Analysis and optimization of all-terrain mobile robot body structure[J]. Chinese Journal of Engineering Design, 2021, 28(2): 195-202.
[3] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[4] ZHENG Ming-jun, YANG She, WU Wen-jiang, ZHAO Chen-lei. Parameter optimization of sand throwing plate of railway sand cleaning vehicle[J]. Chinese Journal of Engineering Design, 2020, 27(1): 87-93.
[5] TANG Rong-jiang, HU Bin-fei, ZHANG Miao, LU Zeng-jun, XIAO Fei, LAI Fan. Analysis and optimization for pre-filteration performance of high inlet pipe of commercial vehicle based on CFD and test[J]. Chinese Journal of Engineering Design, 2019, 26(4): 403-408.
[6] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[7] ZHONG Gong-xiang, ZOU Di, ZHANG Xing. Design and simulation of triangular air-powered rotary enginebased on CFD and ADAMS[J]. Chinese Journal of Engineering Design, 2019, 26(3): 305-314.
[8] LI Yan-kui, LÜ Yan-ming, NI Ming-ming. The wear analysis of precision blasting die for aviation blades based on orthogonal test[J]. Chinese Journal of Engineering Design, 2017, 24(6): 632-637.
[9] XING Meng-long, LIU Jia-xin, LU Chun-guang, JIANG Yan-kun. Improvement and signal-to-noise ratio analysis of cooling fan for grader[J]. Chinese Journal of Engineering Design, 2017, 24(5): 563-571.