Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 368-376    DOI: 10.3785/j.issn.1006-754X.2024.03.199
Tribology and Surface/Interface Technology     
Characterization of scraped surface morphology based on 3D-motif method
Chunpeng YANG(),Lihua WANG(),Xierui CHEN,Wei JIANG
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML     PDF(4565KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In response to the lack of quantitative characterization methods of surface morphology in the study of microscopic properties and functional mechanism of scraped surfaces, the 3D-motif method was used to characterize the scraped surface morphology. The scraped surface was measured by using LI-3 contact three-dimensional surface morphology measuring instrument, and the two-dimensional grayscale image of the scraped surface was generated by three-dimensional point cloud data. Then, according to the definition of catchment basin in 3D-motif method, the motif segmentation and merging for the grayscale image of scraped surface were conducted by using watershed algorithm. Taking the overall texture region motif segmentation results of scraped surfaces with different precision levels as the object, the feature saliency was defined, and six motif parameters, including depth, area, direction angle, anisotropy rate, flatness coefficient and feature saliency, were extracted and calculated for the scraped surface on two different area scales (25 mm2 and 0.25 mm2). Combined with the distribution of some motif parameters and the change trend of the number of motif, the scraped surface was characterized and analyzed from the dimension and morphology of the morphological features, achieving the complete characterization of the three-dimensional morphology of the scraped surface with fewer parameters. The results can provide a theoretical basis for further analysis of the microscopic properties of scraping surfaces.



Key wordsscraped surface      3D-motif method      surface morphology      watershed algorithm     
Received: 30 August 2023      Published: 27 June 2024
CLC:  TH 161  
Corresponding Authors: Lihua WANG     E-mail: 1289598373@qq.com;kmwanglihua@163.com
Cite this article:

Chunpeng YANG,Lihua WANG,Xierui CHEN,Wei JIANG. Characterization of scraped surface morphology based on 3D-motif method. Chinese Journal of Engineering Design, 2024, 31(3): 368-376.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.199     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/368


基于3D-motif法的刮研表面形貌表征

针对刮研表面微观特性和功能机理研究中缺少表面形貌量化表征方法的问题,采用3D-motif法对刮研表面形貌进行表征。使用LI-3型接触式三维表面形貌测量仪对刮研表面进行测量,并利用三维点云数据生成刮研表面的二维灰度图像。然后,根据3D-motif法中集水盆地的定义,采用分水岭算法对刮研表面的灰度图像进行motif分割与合并。以不同精度等级的刮研表面的整体纹理区域motif分割结果为对象,定义了特征显著度并提取计算了刮研表面在2种不同面积尺度(25 mm2和0.25 mm2)上的深度面积方向角各向异性率扁平系数和特征显著度等6项motif参数。结合部分motif参数的分布情况和motif数量的变化趋势,从形貌特征的尺寸和形态两个方面对刮研表面进行了表征和分析,实现了以较少参数完整表征刮研表面的三维形貌。研究结果可为后续刮研表面微观特性的深入分析提供理论基础。


关键词: 刮研表面,  3D-motif法,  表面形貌,  分水岭算法 
Fig.1 Scraped surface specimens with different precision
刮研表面精度粗糙度/μm研点数/个刀痕状态
1级1.661 8≥25细密
3级2.040 2≥20细密
4级2.599 6≥12较为粗大
Table 1 Characteristic parameters of scraped surface specimens with different precision
Fig.2 LI-3 contact three-dimensional surface morphology measuring instrument
Fig.3 Three-dimensional morphology and two-dimensional grayscale image of scraped surface
Fig.4 Immersion process of watershed algorithm
Fig.5 Over-segmentation phenomenon of original watershed algorithm
Fig.6 Merging process of 3D-motif
Fig.7 Simplified model of scraped surface
Fig.8 Relationship between motif number and threshold area of scraped surface
Fig.9 Different merging stages of motif on scraped surface
刮研精度h/μmS/mm2θ/(°)rfk
1级15.178 80.307 587.40.841 42.061 20.283 8
3级20.504 40.344 083.30.782 81.649 40.361 1
4级28.281 90.359 388.10.786 51.297 60.394 6
Table 2 Mean motif parameter value of scraped surface under Δ=0.12 mm2 (with area scale of 25 mm2)
刮研精度h/μmS/mm2θ/(°)rfk
1级5.398 70.003 4118.10.821 86.132 60.099 3
3级7.687 30.003 6123.60.799 04.428 20.170 2
4级12.293 00.003 4115.70.830 52.672 30.217 8
Table 3 Mean motif parameter value of scraped surface under Δ=1.0×10-3 mm2 (with area scale of 0.25 mm2)
Fig.10 Distribution of motif depth of scraped surface
Fig.11 Distribution of motif direction angle of scraped surface
[1]   张潮.刮研工艺介绍[J].机械制造,2004,42(1):16-17. doi:10.3969/j.issn.1000-4998.2004.01.005
ZHANG C. Introduction of scraping technology[J]. Machinery, 2004, 42(1): 16-17.
doi: 10.3969/j.issn.1000-4998.2004.01.005
[2]   李小朋,孙雷雷,刘永红.刮研加工自动化研究现状及发展分析[J].制造技术与机床,2012(7):97-100. doi:10.3969/j.issn.1005-2402.2012.07.031
LI X P, SUN L L, LIU Y H. Status of auto-scraping research and analysis of its development[J]. Manufacturing Technology & Machine Tool, 2012(7): 97-100.
doi: 10.3969/j.issn.1005-2402.2012.07.031
[3]   孙雷雷.刮研加工表面自动检测技术研究[D].青岛:中国石油大学(华东),2014.
SUN L L. Research on automatic surface inspection technology for scraping workpiece[D]. Qingdao: China University of Petroleum (East China), 2014.
[4]   曹恒督,高志.一种刮研机器人及其高点识别算法的设计[J].机械设计与制造,2021(10):255-258,262. doi:10.3969/j.issn.1001-3997.2021.10.057
CAO H D, GAO Z. Design of new auto-scraping robot and its high-points recognition algorithm[J]. Machinery Design & Manufacture, 2021(10): 255-258, 262.
doi: 10.3969/j.issn.1001-3997.2021.10.057
[5]   HSIEH T H, JYWE W Y, TSAI Y C, et al. Design, manufacture, and development of a novel automatic scraping machine[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 2617-2630.
[6]   刘伟,童慧芬,李梅,等.导轨自动刮研系统的设计与研究 [J].制造技术与机床,2014(1):70-73. doi:10.3969/j.issn.1005-2402.2014.01.020
LIU W, TONG H F, LI M, et al. Design and research of automatic scraping system for guideway[J]. Manufacturing Technology & Machine Tool, 2014(1): 70-73.
doi: 10.3969/j.issn.1005-2402.2014.01.020
[7]   王犇.球头铣削表面形貌表征及摩擦磨损特性研究[D]. 哈尔滨:哈尔滨理工大学,2021.
WANG B. Study on surface topography characterization and friction and wear performance of ball-end milling[D]. Harbin: Harbin University of Science and Technology, 2021.
[8]   TANG C X, TANG J, VAN WESTEN C J, et al. Modeling landslide failure surfaces by polynomial surface fitting[J]. Geomorphology, 2020, 368: 107358.
[9]   MANDELBROT B B. The fractal geometry of nature[M]. New York: W. H. Freeman and Company, 1982.
[10]   BROWN C A, CHARLES P D, JOHNSEN W A, et al. Fractal analysis of topographic data by the patchwork method[J]. Wear, 1993, 161(1/2): 61-67.
[11]   张永芳,刘成,强程,等.基于分块迭代函数系统的缸套表面织构的分形表征[J].中国表面工程,2022,35(1): 220-230. doi:10.11933/j.issn.1007?9289.20210804001
ZHANG Y F, LIU C, JIANG C, et al. Fractal characterization on surface texture of cylinder liner based on partitioned iterated function system[J]. China Surface Engineering, 2022, 35(1): 220-230.
doi: 10.11933/j.issn.1007?9289.20210804001
[12]   JIANG X, SENIN N, SCOTT P J, et al. Feature-based characterisation of surface topography and its application[J]. CIRP Annals, 2021, 70(2): 681-702.
[13]   VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(6): 583-598.
[14]   FAN K C, TORNG J, JYWE W, et al. 3-D measurement and evaluation of surface texture produced by scraping process[J]. Measurement, 2012, 45(3): 384-392.
[15]   International Organization for Standardization. Geometrical product specifications (GPS): surface texture: areal. Part 2: terms, definitions and surface texture parameters: [S]. Geneve: International Organization for Standardization, 2021: 1-76.
[16]   万筱怡,刘小君,刘焜.基于分水岭算法的3D-motif构造及其对表面形貌的表征[J].润滑与密封,2010,35(8):31-35. doi:10.3969/j.issn.0254-0150.2010.08.009
WAN X Y, LIU X J, LIU K. 3D-motif based on watershed algorithm and its application to the characterization of surface topography[J]. Lubrication Engineering, 2010, 35(8): 31-35.
doi: 10.3969/j.issn.0254-0150.2010.08.009
[17]   BARRÉ F, LOPEZ J. Watershed lines and catchment basins: a new 3D-motif method[J]. International Journal of Machine Tools and Manufacture, 2000, 40(8): 1171-1184.
[18]   黄长辉,邹文栋,颜乐先,等.一种3D-Motif方法对工件磨痕三维形貌的表征[J]. 兵器装备工程学报,2010,31(2):86-89. doi:10.3969/j.issn.1006-0707.2010.02.029
HUANG C H, ZOU W D, YAN L X, et al. Characterization of 3D morphology of grinding marks of workpieces by a 3D-Motif method[J]. Journal of Ordnance Equipment Engineering, 2010, 31(2): 86-89.
doi: 10.3969/j.issn.1006-0707.2010.02.029
[19]   金长善,于凤鸣.关于导轨刮研表面润滑特性的分析[J]. 设备维修,1984(6):26-30.
JIN C S, YU F M. Analysis of lubrication characteristics of scraping surface of guide rail[J]. Plant Maintenance Engineering, 1984(6): 26-30.
[20]   李志强.表面微观形貌的测量及其表征[D].重庆:重庆大学,2006.
LI Z Q. The survey and token of micro-scale surface[D]. Chongqing: Chongqing University, 2006.
[21]   邹文栋,黄长辉,欧阳小琴,等.合金韧窝断口微观形貌的扫描白光干涉三维检测重构及Motif表征[J].机械工程学报,2011,47(10):8-13. doi:10.3901/jme.2011.10.008
ZOU W D, HUANG C H, OUYANG X Q, et al. Scanning white-light interferometric measurement 3D reconstruction and Motif evaluation of alloy dimple fracture microtopography[J]. Journal of Mechanical Engineering, 2011, 47(10): 8-13.
doi: 10.3901/jme.2011.10.008
[1] LUO Yan-yan, PAN Xiao-song, MA Xuan, WU Xiong-wei. Research on application of infrared thermal imaging technology in plug-in wear detection of electrical connector[J]. Chinese Journal of Engineering Design, 2021, 28(5): 615-624.