Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 377-382    DOI: 10.3785/j.issn.1006-754X.2024.24.107
Mechanical parts and equipment design     
Design and analysis of flexible intelligent ultrasonic welding workstation
Zhen YANG1(),Baicun WANG2(),Shujian SUN3,Yang LI4,Weiming ZHANG5,Zongbo ZHENG6,Kailing ZHU2,Jian ZHENG1
1.Yuyao TAISONIC Automation Technology Co. , Ltd. , Ningbo 315400, China
2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
3.School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
4.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
5.Fucheng Automotive Parts Co. , Ltd. , Ningbo 315400, China
6.Institute of Technology Transfer, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(3236KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The rapid development of automotive manufacturing industry, coupled with the accelerated iteration of vehicle models and component updates, requires the production of automotive components to respond quickly to market demand. Ultrasonic welding workstation is a kind of automatic welding equipment, it still faces some problems such as insufficient universality, low flexibility and low-level intelligence. Therefore, a flexible intelligent ultrasonic welding workstation was designed and developed. The physical system of workstation was constructed by modular design to achieve the universality for different automotive components; the flexibility of welding equipment was improved by adopting various switchable flexible components; the intelligence level of workstation and usability of equipment were enhanced by integrating and applying intelligent technology. The technical parameters of the workstation were superior to those of similar products at home, and efficient, intelligent and flexible production was realized in specific applications. The research results are of great significance for promoting the industrial upgrading of the automobile manufacturing industry.



Key wordswelding workstation      ultrasonic welding      flexible manufacturing      intelligent manufacturing     
Received: 19 January 2024      Published: 27 June 2024
CLC:  TP 23  
Corresponding Authors: Baicun WANG     E-mail: yangzhen@ taisonic.com.cn;baicunw@zju.edu.cn
Cite this article:

Zhen YANG,Baicun WANG,Shujian SUN,Yang LI,Weiming ZHANG,Zongbo ZHENG,Kailing ZHU,Jian ZHENG. Design and analysis of flexible intelligent ultrasonic welding workstation. Chinese Journal of Engineering Design, 2024, 31(3): 377-382.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.24.107     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/377


柔性智能超声波焊接工作站的设计与分析

随着汽车制造产业的快速发展,车型迭代和零部件更新速度加快,汽车零部件的生产须快速响应市场需求。超声波焊接工作站是一种自动化焊接设备,目前尚存在通用性不足、柔性低和智能化程度不高的问题。为此,设计和开发了一种柔性智能超声波焊接工作站。以模块化设计的方式构建了工作站物理系统,实现了工作站对不同汽车零部件的通用性;采用多种可切换的柔性组件,来提高焊装设备的柔性;集成和应用智能化技术,以提高工作站的智能化水平,提高设备的易用性。该工作站的技术参数优于国内同类产品,并在具体应用中实现了高效、智能和柔性生产。研究结果对推动汽车制造业的产业升级具有重要意义。


关键词: 焊接工作站,  超声波焊接,  柔性制造,  智能制造 
Fig.1 Diagram of flexible intelligent ultrasonic welding workstation
Fig.2 Workflow of flexible intelligent ultrasonic welding workstation
Fig.3 Composition of ultrasonic robot welding unit with automatic switching of welding heads
Fig.4 Composition of automated unit for quick switching of mold modules
Fig.5 Composition of six head automatic switching punching and cutting module
Fig.6 Schematic of control system structure of ultrasonic welding workstation
Fig.7 Built-in blocker-die monitoring sensor
Fig.8 Intelligent statistics and interaction interface for production data of vehicle bumper
Fig.9 Prototype of ultrasonic welding workstation
比较项泰速P611柔性冲焊站泰速CX483柔性冲焊站柔性智能超声波焊接工作站
生产节拍/s≤115≤115103.0
换刀时间/s≤20≤2016.1
换工装时间/s≤6≤64.8
一次焊装规格2种规格焊点6种规格焊点,不停机全自动替换
一次自动冲切切换两头自动切换冲切六头自动切换冲切
系统数字化应用程度
Table 1 Comparison of main parameters and application effects between flexible intelligent ultrasonic welding workstation and similar products at home
[1]   周金涛,徐旭. 塑料焊接工艺在内饰产品上应用[J].汽车工艺与材料,2019(2):1-5.
ZHOU J T, XU X. Application of plastic welding technology in interior products [J]. Automotive Technology and Material, 2019(2): 1-5.
[2]   卞迎春. 汽车保险杠生产工艺优化研究[D].镇江:江苏大学,2020:11-15.
BIAN Y C. Research on optimization of production process for automotive bumpers[D]. Zhenjiang: Jiangsu University, 2020: 11-15.
[3]   GOURZOULIDIS G A, ACHTIPIS A, TOPALIS F V, et al. Artificial optical radiation photobiological hazards in arc welding[J]. Physica Medica, 2016, 32(8): 981-986.
[4]   曹金鑫. 基于激光视觉的智能焊接工作站设计[D].保定:河北大学,2022:16-18.
CAO J X. Design of intelligent welding workstation based on laser vision [D].Baoding: Hebei University, 2022: 16-18.
[5]   王阳. 轻型机械臂的结构分析及优化设计[D].北京:北京交通大学,2017:99-106.
WANG Y. Structural analysis and optimization design of lightweight robotic arms[D]. Beijing: Beijing Jiaotong University, 2017: 99-106.
[6]   王柏村,薛塬,延建林,等. 以人为本的智能制造:理念、技术与应用[J].中国工程科学,2020,22(4):139-146. doi:10.15302/j-sscae-2020.04.020
WANG B C, XUE Y, YAN J L, et al. Humanistic intelligent manufacturing: concept, technology, and application [J]. Strategic Study of CAE, 2020, 22(4): 139-146.
doi: 10.15302/j-sscae-2020.04.020
[7]   吴亚赛,许焕敏. 副车架侧梁多机器人焊接工作站设计与仿真[J].组合机床与自动化加工技术,2020(9):126-129.
WU Y S, XU H M. Design and simulation of multi robot welding workstation for sub frame side beam[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(9): 126-129.
[8]   赵明利,朱华炳,祖磊,等. 金属结构件焊接机器人工作站的设计[J].组合机床与自动化加工技术,2019(4):146-148.
ZHAO M L, ZHU H B, ZU L, et al. Design of metal structure welding robot work station [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(4): 146-148.
[9]   盛乐明,胡彩凤,肖求辉. 基于工业机器人的油箱柔性焊接生产线整体解决方案设计与研究[J].制造业自动化, 2023,45(11):208-211. doi:10.3969/j.issn.1009-0134.2023.11.042
SHENG L M, HU C F, XIAO Q H. Design and research of overall solution for flexible welding production line of fuel tank based on industrial robots[J]. Manufacturing Automation, 2023, 45(11): 208-211.
doi: 10.3969/j.issn.1009-0134.2023.11.042
[10]   杨秀烨,方金祥,何鹏. 自动焊接传感技术研究现状及发展趋势[J].材料导报,2022,36(3):160-167. doi:10.11896/cldb.20090224
YANG X Y, FANG J X, HE P. Research status and development trends of automatic welding sensing technology [J]. Materials Reports, 2022, 36(3): 160-167.
doi: 10.11896/cldb.20090224
[11]   纪晓东,程天宇,华亮,等. 基于声信号识别的水下焊接质量检测方法研究[J].工程设计学报,2023,30(5):562-570. doi:10.3785/j.issn.1006-754X.2023.00.066
JI X D, CHENG T Y, HUA L, et al. Research on detection method of underwater welding quality based on acoustic signal recognition[J]. Chinese Journal of Engineering Design, 2023, 30(5): 562-570.
doi: 10.3785/j.issn.1006-754X.2023.00.066
[12]   HAMIZATUN M F, HAIKAL S A, MOHAMED N M Z N. Ergonomic embedded in designing welding assembly tool for automotive manufacturing process [J]. Journal of Modern Manufacturing Systems and Technology, 2023, 7(2): 23-30.
[13]   潘文联,成楠,郑黎明,等. 焊接机器人自动化焊接的实现与探索[J].焊接技术,2022,51(1):72-75.
PAN W L, CHENG N, ZHENG L M, et al. Implementation and exploration of automated welding by welding robots [J]. Welding Technology, 2022, 51(1): 72-751.
[14]   DONG X. Finite element analysis and vibration control of the substation equipment water washing robot with hot-line[C]//International Conference on Applied Robotics for the Power Industry, Jinan, Oct. 1, 2016.
[15]   LI Y, YU B, WANG B, et al. Online quality inspection of ultrasonic composite welding by combining artificial intelligence technologies with welding process signatures[J]. Materials & Design, 2020, 194: 108912.
[1] Jing ZHOU,Hong-fei GAO,Lin LU,Guo-lin DUAN. Research on extrusion force of micro-flow extrusion 3D printer controlled by variable universe fuzzy PID[J]. Chinese Journal of Engineering Design, 2022, 29(5): 572-578.
[2] ZHANG Ai-yun, WANG Ji-hua, GAO Wei, ZHANG Mei-juan. Design of VVT engine rotor defect detection system based on machine vision[J]. Chinese Journal of Engineering Design, 2021, 28(6): 776-784.
[3] ZHAO Bo, ZHAO Hai-ming, LIU Chen, HU Gang. Parametric design and optimization of suspended mining head for deep-sea cobalt crust[J]. Chinese Journal of Engineering Design, 2021, 28(5): 559-568.
[4] XU Gang, XIANG Kui, TANG Bi-wei, PANG Mu-ye. Estimation method of ankle joint impedance based on series elastic principle and AUDI algorithm[J]. Chinese Journal of Engineering Design, 2020, 27(5): 552-559.
[5] LU Jin-nan, SHAN De-xing. Research on railway carriage position detection based on semantic segmentation[J]. Chinese Journal of Engineering Design, 2020, 27(5): 568-576.
[6] ZHANG Wei, GAO Hui-min. Design and research of pen tube defect automation detection system[J]. Chinese Journal of Engineering Design, 2019, 26(3): 346-353.
[7] LI Li-Juan, XU Shang-Long, QIN Jie. Research on hardware surface defects detection based 
on image processing techniques
[J]. Chinese Journal of Engineering Design, 2011, 18(2): 134-138.