Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (4): 529-537    DOI: 10.3785/j.issn.1006-754X.2024.03.202
Whole Machine and System Design     
Workspace analysis of in situ printing system for repairing large-skin wounds
Huixuan ZHU1,2,3,4(),Guangze CUI1,2,3,Bingnan LI2,3,Kai GUO2,3,Wei WANG1,Song LI2,3()
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(3358KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The repair of large-skin wounds has been a difficult problem to be solved urgently. At present, the commonly used repair methods are mainly autologous skin transplantation and wound dressing treatment, but these methods cannot simultaneously meet the needs of large-skin repair and customized repairment. The in situ skin printing technology provides a new idea for the repair of large-skin wounds. However, the existing bioprinting equipment has small printing range and low printing precision, which cannot realize the shape printing of large area of skin tissue. In order to solve the above problems, an in situ skin printing system composed of Stewart parallel robot, linear module mechanism, print head and 3D scanner was proposed. The Stewart parallel robot could achieve high-precision skin in situ printing as printing driving device due to high repeated positioning precision and low cumulative error. The Stewart parallel robot had six degrees of freedom and could adjust the printing angle in 3D space, allowing bioink to fully cover the skin wounds along the skin surface, which was beneficial for wound repair. In order to analyze the feasibility of the designed in situ skin printing system, the workspace of the parallel robot was calculated by numerical method, and the working range of the in situ skin printing system was obtained and verified through printing experiments. The experimental results showed that the parallel robot operated according to the specified path, and the print head could stably inject bioink during the printing process. The working range of the in situ skin printing system was basically consistent with the workspace of the parallel robot, which met the needs of repairing large-skin wounds. The research results lay a theoretical foundation for the subsequent animal experiments on large-skin repair.



Key wordsrepair of large-skin wounds      in situ skin printing technology      parallel robot      workspace     
Received: 12 September 2023      Published: 26 August 2024
CLC:  TP 242.2  
Corresponding Authors: Song LI     E-mail: zhuhuixuan@sia.cn;lisong@sia.cn
Cite this article:

Huixuan ZHU,Guangze CUI,Bingnan LI,Kai GUO,Wei WANG,Song LI. Workspace analysis of in situ printing system for repairing large-skin wounds. Chinese Journal of Engineering Design, 2024, 31(4): 529-537.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.202     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I4/529


面向皮肤大面积损伤修复的原位打印系统工作空间分析

皮肤大面积损伤修复一直是临床上亟待解决的难题。目前,常用的修复方法主要为自体皮肤移植和伤口敷料治疗,但这些方法不能同时满足皮肤大面积修复和定制化治疗的需求。原位皮肤打印技术为皮肤大面积损伤修复提供了新思路,但现有的生物打印设备打印范围小且打印精度低,无法实现皮肤大面积组织的随形打印。为解决上述问题,提出了一种由Stewart并联机器人、直线模组机构、打印头和三维扫描仪等组成的原位皮肤打印系统。其中,Stewart并联机器人的重复定位精度高且累积误差小,其作为打印驱动装置可实现高精度的皮肤原位打印;Stewart并联机器人具有6个自由度,可在三维空间中实时调整打印角度,使得生物墨水能够沿皮肤曲面完整地覆盖在皮肤损伤处,有利于伤口修复。为分析所设计原位皮肤打印系统的可行性,通过数值法计算并联机器人的工作空间,得到了原位皮肤打印系统的工作范围,并通过打印实验进行了验证。实验结果表明,并联机器人可按照指定路径运行,打印头在打印过程中可稳定喷射生物墨水;原位皮肤打印系统的工作范围与并联机器人的工作空间基本吻合,可满足皮肤大面积损伤修复的需求。研究结果为后续的皮肤大面积修复动物实验奠定了理论基础。


关键词: 皮肤大面积损伤修复,  原位皮肤打印技术,  并联机器人,  工作空间 
Fig.1 Schematic of in situ skin printing system and its storage box
Fig.2 Structure diagram of Stewart parallel robot
Fig.3 Schematic of coordinate rotation transformation
Fig.4 Workspace of Stewart parallel robot
Fig.5 Simulation model of in situ skin printing system
Fig.6 Movement distance of print head centroid along X direction
Fig.7 In situ skin printing system prototype
Fig.8 Comparison of sodium alginate printing experiment results
Fig.9 Gelatin printing experiment result
Fig.10 Smooth muscle cell morphology
Fig.11 Cell printing experiment result
Fig.12 Distribution of smooth muscle cells after printing
[1]   STANTON D N, GANGULI-INDRA G, INDRA A K, et al. Bioengineered efficacy models of skin disease: advances in the last 10 years[J]. Pharmaceutics, 2022, 14(2): 319.
[2]   CHOUHAN D, DEY N, BHARDWAJ N, et al. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances[J]. Biomaterials, 2019, 216: 119267.
[3]   ZENG D, SHEN S H, FAN D D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications[J]. Chinese Journal of Chemical Engineering, 2021, 30: 308-320.
[4]   PISANI S, DORATI R, SCOCOZZA F, et al. Preliminary investigation on a new natural based poly (gamma-glutamic acid)/Chitosan bioink[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(7): 2718-2732.
[5]   NOROUZI M, BOROUJENI S M, OMIDVARKOR DSHOULI N, et al. Advances in skin regeneration: application of electrospun scaffolds[J]. Advanced Healthcare Materials, 2015, 4(8): 1114-1133.
[6]   王瑞.生物3D打印技术构建dECM基人工皮肤的研究[D].泉州:华侨大学,2021.
WANG R. Research on 3D bioprinting technology to construct dECM-based artificial skin[D]. Quanzhou: Huaqiao University, 2021.
[7]   MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32: 773-785.
[8]   TSENG H, GAGE J A, HAISLER W L, et al. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting[J]. Scientific Reports, 2016, 6: 30640.
[9]   OZBOLAT I T. Bioprinting scale-up tissue and organ constructs for transplantation[J]. Trends in Biotechnology, 2015, 33(7): 395-400.
[10]   NG W L, WANG S, YEONG W Y, et al. Skin bioprinting: impending reality or fantasy?[J]. Trends in Biotechnology, 2016, 34(9): 689-699.
[11]   PARK J A, LEE H R, PARK S Y, et al. Self-organization of fibroblast-laden 3D collagen microstructures from inkjet-printed cell patterns[J]. Advanced Biosystems, 2020, 4(5): 1900280.
[12]   PARK J A, YOON S, KWON J, et al. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing[J]. Scientific Reports, 2017, 7: 14610.
[13]   YOON S, PARK J A, LEE H R, et al. Inkjet-spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures[J]. Advanced Healthcare Materials, 2018, 7(14): e1800050.
[14]   连伟龙,连芩,焦天,等.皮肤修复生物3D打印的研究进展与挑战[J].光电工程,2021,48(8):210105.
LIAN W L, LIAN Q, JIAO T, et al. The research progress and challenge of 3D bioprinting for skin repairing[J]. Opto-Electronic Engineering, 2021, 48(8): 210105.
[15]   HAKIMI N, CHENG R, LENG L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues[J]. Lab on a Chip, 2018, 18(10): 1440-1451.
[16]   赵占盈,徐铭恩,石然,等.基于细胞3D打印技术的肿瘤药物筛选细胞芯片研究[J].中国生物医学工程学报,2014,33(2):161-169.
ZHAO Z Y, XU M E, SHI R, et al. Research of anti-tumor drug screening cell chip based on 3D cell printing technique[J]. Chinese Journal of Biomedical Engineering, 2014, 33(2): 161-169.
[17]   张伟.面向软体机器人的软材料嵌入式3D打印基础研究[D].苏州:苏州大学,2021.
ZHANG W. Experimental research on embedded 3D printing technology with soft materials for soft robotics[D]. Suzhou: Soochow University, 2021.
[18]   王润秋.模拟生物软组织应变硬化特性的超材料结构设计与3D打印方法研究[D].杭州:浙江大学,2020.
WANG R Q. Research on metamaterial structure design and 3D printing method for simulating strain-stiffening property of biological soft tissue[D]. Hangzhou: Zhejiang University, 2020.
[19]   蔡自兴.机器人学[M].2版.北京:清华大学出版社,2009:1-30.
CAI Z X. Robotics[M]. 2nd ed. Beijing: Tsinghua University Press, 2009: 1-30.
[20]   黄真,赵永生,赵铁石.高等空间机构学[M].2版.北京:高等教育出版社,2014:159-184.
HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. 2nd ed. Beijing: Higher Education Press, 2014: 159-184.
[21]   WANG Y J, FANG C, JIANG Q M. Singularity-free workspace of parallel robots[J]. Advances in Robotics & Automation, 2015, 4(2): 1000122.
[22]   吴生富,王洪波,黄真.并联机器人工作空间的研究[J].机器人,1991,13(3):33-39.
WU S F, WANG H B, HUANG Z. Study of workspace in parallel robot manipulator[J]. Robot, 1991, 13(3): 33-39.
[23]   KUMAR V. Characterization of workspaces of parallel manipulators[J]. Journal of Mechanical Design, 1992, 114(3): 368-375.
[24]   魏修亭,李刚,杜强,等.6-PTRT型齿顶倒角机器人运动学及工作空间分析[J].中国机械工程,2013,24(6):750-754.
WEI X T, LI G, DU Q, et al. Kinematic analysis and workspace calculation of a 6-PTRT manipulator for chamfering gear addendum[J]. China Mechanical Engineering, 2013, 24(6): 750-754
[25]   于晖,孙立宁,刘品宽,等.新型 6-HTRT 并联机器人工作空间和参数研究[J].机器人,2002,24(4):293-298,313.
YU H, SUN L N, LIU P K, et al. Study on the workspace and parameter of novel 6-HTRT parallel robot[J]. Robot, 2002, 24(4): 293-298, 313.
[1] Mingfang CHEN,Liangen HUANG,Yongxia ZHANG,Guoyi YAO. Kinematics analysis and validation of 3-PUU parallel mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(6): 763-778.
[2] Yue LI,Yunjiao DENG,Ran AO,Yulei HOU,Daxing ZENG. Structure design and motion analysis of pipeline dredging robot with diameter adjustment[J]. Chinese Journal of Engineering Design, 2023, 30(3): 353-361.
[3] Chunyan ZHANG,Yiwen JIANG,Jie YANG,Xinxing JIANG. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 189-199.
[4] Fan-mao LIU,Can-can LIAO,Yuan-yuan ZHANG,Han MO. Design and orientation workspace analysis of new dish-type solar tracking platform[J]. Chinese Journal of Engineering Design, 2022, 29(5): 616-626.
[5] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
[6] LIU Zhuo, LIAN Bin-bin, LI Qi. Kinematic analysis of Exechon parallel robot based on finite and instantaneous screw theory[J]. Chinese Journal of Engineering Design, 2020, 27(3): 357-363.
[7] LU Jia-wei, ZHANG Qiu-ju, ZHAO Hong-lei. Design and human-like motion research of service robot for the elderly[J]. Chinese Journal of Engineering Design, 2020, 27(2): 269-278.
[8] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[9] LI Bao-kun, GUO Yong-cun, WANG Chuan-li, CAO Yi. Orientation workspace and global orientation capability analysis of the Gough-Stewart parallel mechanism[J]. Chinese Journal of Engineering Design, 2015, 22(5): 452-460.
[10] WANG Nan,ZHOU Hai-dong,CUI Guo-hua,XU Feng. Study of kinematic performance of the tea screening plant based on three rotation parallel mechanism[J]. Chinese Journal of Engineering Design, 2014, 21(3): 266-272.
[11] TAN Xing-Qiang, JIA Shu-Yuan, XIE Zhi-Jiang. Optimization design for dynamics performance parameters of 6_PUS parallel robot[J]. Chinese Journal of Engineering Design, 2013, 20(6): 470-475.
[12] YANG Yin, GU Ji-Nan, GUO Lin. Trajectory planning and kinematics simulation of the 4-RUPaR high-speed handling parallel robot based on ADAMS[J]. Chinese Journal of Engineering Design, 2013, 20(5): 375-382.
[13] HUI Ji-Zhuang, WEI Fang-Sheng, GAO Kai, DING Xiang. Study on dynamics simulation of redundantly actuated parallel robot based on ADAMS[J]. Chinese Journal of Engineering Design, 2012, 19(5): 362-365.
[14] YIN Xiao-Qin, ZHAO Guang-Hong, MA Lü-Zhong. Workspace analysis of the end-effectors of Chinese massage robot[J]. Chinese Journal of Engineering Design, 2012, 19(4): 302-306.
[15] MA Ming-Zhi, RUI Yan-Nian, ZHANG Fei, QIAO Dong-Dong. Three axis parallel robot control system design based on the extension adaptive theory[J]. Chinese Journal of Engineering Design, 2012, 19(1): 53-56.