Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 616-626    DOI: 10.3785/j.issn.1006-754X.2022.00.077
Whole Machine and System Design     
Design and orientation workspace analysis of new dish-type solar tracking platform
Fan-mao LIU(),Can-can LIAO,Yuan-yuan ZHANG,Han MO
School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Download: HTML     PDF(3967KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional dish-type solar thermal power generation system adopts slewing ring and spiral elevator to track the azimuth angle and altitude angle of solar, but it is unable to automatically adjust the posture of the condenser mirror element to cope with external disturbances. Using the parallel mechanism to realize solar tracking not only has the inherent advantages of high stiffness and small tracking error, but also can automatically adjust the posture of condenser mirror element. If the traditional spherical hinge is used, due to its physical limitations, the deflection ability of the tracking mechanism can not accurately meet the technical requirements of a wide range of solar tracking angles. Aiming at the above problems, a new dish-type solar tracking platform based on 3-RPS parallel mechanism was designed by using a new passive spherical hinge, and its tracking angle range was calculated; at the same time, the orientation workspace of the 3-RPS parallel tracking mechanism was calculated by establishing the inverse kinematics equation of the general 3-RPS parallel mechanism and combining with the spherical coordinate search method. According to the influence law of its structural parameters on the orientation workspace, the optimal values of structural parameters were determined. The results showed that: when the new passive spherical hinge was selected, the shape of moving and fixed platforms was isosceles triangle, the rotation pair axes were coplanar and triangular, the radius ratio of the moving and fixed platforms was two, and the branch chain length was twice the moving platform radius, the structure of new dish-type solar tracking platform met the design requirements, and the adjusted orientation workspace met the angle range required for solar tracking. The research results can provide reference for the subsequent structure design and parameter optimization of solar tracking platforms.



Key wordstracking platform      new passive spherical hinge      3-RPS parallel mechanism      orientation workspace     
Received: 13 April 2022      Published: 02 November 2022
CLC:  TH 112  
Cite this article:

Fan-mao LIU,Can-can LIAO,Yuan-yuan ZHANG,Han MO. Design and orientation workspace analysis of new dish-type solar tracking platform. Chin J Eng Design, 2022, 29(5): 616-626.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.077     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/616


新型碟式太阳能跟踪平台设计和姿态工作空间分析

传统的碟式太阳能热发电系统采用回转支承和螺旋升降机来实现太阳方位角和高度角的跟踪,不足之处在于无法自动调整聚光器镜面单元的位姿以应对外界扰动。采用并联机构来实现太阳跟踪,不仅具有刚度高、跟踪误差小等内在优势,还可以自动调整聚光器镜面单元位姿。若采用传统球铰,由于其物理限制,跟踪机构的偏转能力不能精确满足太阳跟踪角度范围大的技术要求。针对上述问题,采用新型被动球铰,设计了一种基于3-RPS并联机构的新型碟式太阳能跟踪平台,并计算了其跟踪角度的范围;同时,通过建立通用3-RPS并联机构的逆运动学方程,结合球坐标搜索法计算了3-RPS并联跟踪机构的姿态工作空间,并结合结构参数对其姿态工作空间的影响规律,确定了各结构参数的最优值。结果表明:当新型碟式太阳能跟踪平台选用新型被动球铰,动、定平台形状为等腰三角形,转动副轴线共面且呈三角形布置,动、定平台的半径比为2以及支链长度为动平台半径的2倍时,其结构符合设计要求且调整后的姿态工作空间满足太阳跟踪所需的角度范围。研究结果可为后续的太阳跟踪平台结构设计和参数优化提供参考。


关键词: 跟踪平台,  新型被动球铰,  3-RPS并联机构,  姿态工作空间 
Fig.1 Schematic of new dish-type solar tracking platform structure
Fig.2 Schematic of single 3-RPS parallel tracking mechanism structure
Fig.3 Layout schematic of mirror element of rotating parabolic condenser
Fig.4 Schematic of new passive spherical hinge structure
Fig.5 Schematic of limit position of new passive spherical hinge output rod
Fig.6 Schematic of improved RPS branch chain structure
Fig.7 Geometric model of solar position calculation
Fig.8 Tracking schematic of single 3-RPS parallel tracking mechanism
Fig.9 Tracking trajectory of new dish-type solar tracking platform
Fig.10 Schematic of general 3-RPS parallel mechanism structure
参数数值
动平台半径R/mm900
定平台半径r/mm550
夹角?/(°)130
夹角φ/(°)280
偏转角δ1/(°)20
偏转角δ2/(°)30
偏转角δ3/(°)80
Table 1 Initial structural parameters of 3-RPS parallel tracking mechanism
Fig.11 Orientation workspace of 3-RPS parallel tracking mechanism with initial structural parameters
Fig.12 Influence of maximum rotation angle of spherical hinge on orientation workspace of 3-RPS parallel tracking mechanism
Fig.13 Influence of shape of moving and fixed platforms on orientation workspace of 3-RPS parallel tracking mechanism
Fig.14 Schematic of different rotation pair axis arrangements
Fig.15 Influence of rotation pair axis on orientation workspace of 3-RPS parallel tracking mechanism
Fig.16 Influence of moving and fixed platform radius on orientation workspace of 3-RPS parallel tracking mechanism
Fig.17 Influence of RPS branch chain length on orientation workspace of RPS parallel tracking mechanism
Fig.18 Final orientation workspace of 3-RPS parallel tracking mechanism
[1]   刘建明,陈革,章其初.碟式斯特林太阳能发电系统最新进展[J].中外能源,2011,16(4):36-40.
LIU Jian-ming, CHEN Ge, ZHANG Qi-chu. Recent advances in technology on dish Stirling solar power generating systems[J]. Sino-Global Energy, 2011, 16(4): 36-40.
[2]   王林军,罗彬,邓煜,等.碟式太阳能聚光器的研究现状及展望[J].中国农机化学报,2016,37(12):136-140,150. doi:10.13733/j.jcam.issn.2095-5553.2016.12.028 .
WANG Lin-jun, LUO Bin, DENG Yu, et al. Research status and development of disc solar concentrator[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(12): 136-140, 150.
doi: 10.13733/j.jcam.issn.2095-5553.2016.12.028
[3]   LONI R, MAHIAN O, MARKIDES C N, et al. A review of solar-driven organic Rankine cycles: recent challenges and future outlook[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111410. doi:10.1016/j.rser.2021. 111410
doi: 10.1016/j.rser.2021. 111410
[4]   DU X, LI Y, WANG P, et al. Design and optimization of solar tracker with U-PRU-PUS parallel mechanism[J]. Mechanism and Machine Theory, 2021, 155: 104107. doi:10.1016/j.mechmachtheory.2020.104107
doi: 10.1016/j.mechmachtheory.2020.104107
[5]   ELSAYED A A, KHALIL E E, KASSEM M A, et al. A novel mechanical solar tracking mechanism with single axis of tracking for developing countries[J]. Renewable Energy, 2021, 170: 1129-1142. doi:10.1016/j.renene. 2021.02.058
doi: 10.1016/j.renene. 2021.02.058
[6]   SHI Yun-hong, TOGHRAIE Davood, NADI Farzad, et al. The effect of the pitch angle, two-axis tracking system, and wind velocity on the parabolic trough solar collector thermal performance[J]. Environment Development and Sustainability, 2021, 23(12): 17329-17348. doi:10.1007/s10668-021-01368-2
doi: 10.1007/s10668-021-01368-2
[7]   颜健,彭佑多,程自然,等.直径17.70 m抛物碟式聚光装置的设计与研制[J].太阳能学报,2018,39(9):2544-2552. doi:10.1155/2018/9046127
YAN Jian, PENG You-duo, CHENG Zi-ran, et al. Design and develop for 17.70 m solar parabolic dish concentrated device[J]. Acta Energiae Solaris Sinica, 2018, 39(9): 2544-2552.
doi: 10.1155/2018/9046127
[8]   SURESH P, MANOJKUMAR S, RAKESH E, et al. Design of solar power LED lighting system using horizontal two-axis arduino based solar tracking system[J]. International Journal of Systems Science, 2019, 8(3): 1149-1155.
[9]   叶鹏达,尤晶晶,仇鑫,等.并联机器人运动性能的研究现状及发展趋势[J].南京航空航天大学学报,2020,52(3):363-377.
YE Peng-da, YOU Jing-jing, QIU Xin, et al. Status and development trend of motion performance in parallel robot[J] Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(3): 363-377.
[10]   HASSANI A, BATALEBLU A, KHALILPOUR S A, et al. Dynamic models of spherical parallel robots for model-based control schemes[EB/OL]. (2021-10-01) [2022-04-13].
[11]   张淑珍,毕彦峰.新型并联太阳跟踪装置的动力学分析[J].机械科学与技术,2020,39(1):35-40. doi:10.13433/j.cnki.1003-8728.20190086
ZHANG Shu-zhen, BI Yan-feng. Analyzing dynamics of a novel parallel tracking solar device[J] Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 35-40.
doi: 10.13433/j.cnki.1003-8728.20190086
[12]   WU J, CHEN X, WANG L. Design and dynamics of a novel solar tracker with parallel mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 88-97.
[13]   魏晨.光电跟踪系统中四绳索牵引并联机构控制系统设计与实现[D].合肥:中国科学技术大学,2021:8-15
WEI Chen. Control system design and implementation of four-cable-driven parallel mechanism in EOTS[D]. Hefei: University of Science and Technology of China, 2021: 8-15.
[14]   ITUL T, PISLA D, STOICA A, et al. Kinematics and design of a simple 2-DOF parallel mechanism used for orientation[M]//New Trends in Mechanism Science, Dordrecht: Springer, 2010: 39-46. doi:10.1007/978-90-481-9689-0_5
doi: 10.1007/978-90-481-9689-0_5
[15]   BARKER L, NEBER M, LEE H. Design of a low-profile two-axis solar tracker[J]. Solar Energy, 2013, 97: 569-576. doi:10.1016/j.solener.2013.09.014
doi: 10.1016/j.solener.2013.09.014
[16]   JENG Shyr-long, Bin-han LUE, CHIENG Wei-hua. Design and analysis of spatial parallel manipulator for dual axis solar tracking[J]. China Mechanical Engineering, 2014, 35(3): 221-231.
[17]   WU J, ZHANG B, WANG L. Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart[J]. Solar Energy, 2016, 127: 36-47. doi:10.1016/j.solener.2016. 01.017
doi: 10.1016/j.solener.2016. 01.017
[18]   MURALIDHARAN V, BANDYOPADHYAY S. A two-degree-of-freedom RSSR-SSR manipulator for sun-tracking[C]//Machines, Mechanism and Robotics, Singapore: Springer, 2019: 135-147. doi:10.1007/978-981-10-8597-0_12
doi: 10.1007/978-981-10-8597-0_12
[19]   SHYAM R B A, ACHARYA M, GHOSAL A. A heliostat based on a three degree-of-freedom parallel manipulator[J]. Solar Energy, 2017, 157: 672-686. doi:10.1016/j.solener.2017.08.073
doi: 10.1016/j.solener.2017.08.073
[20]   SHYAM R B A, GHOSAL A. Path planning of a 3-UPU wrist manipulator for sun tracking in central receiver tower systems[J]. Mechanism and Machine Theory, 2018, 119: 130-141. doi:10.1016/j.mechmachtheory.2017. 08.019
doi: 10.1016/j.mechmachtheory.2017. 08.019
[21]   邱雪松,杨龙,侯雨雷,等.新型大工作空间仿生被动球面铰链构型及工作空间分析[J].中国机械工程,2015,26(3):354-360. doi:10.3969/j.issn.1004-132X.2015.03.012
QIU Xue-song, YANG Long, HOU Yu-lei, et al. Configuration and workspace analysis of a novel bionic passive spherical hinge with large workspace[J] China Mechanical Engineering, 2015, 26(3): 354-360.
doi: 10.3969/j.issn.1004-132X.2015.03.012
[1] LI Bao-kun, GUO Yong-cun, WANG Chuan-li, CAO Yi. Orientation workspace and global orientation capability analysis of the Gough-Stewart parallel mechanism[J]. Chin J Eng Design, 2015, 22(5): 452-460.