Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 161-167    DOI: 10.3785/j.issn.1006-754X.2022.00.019
Innovative Design     
Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism
Fei FENG1(),Yu-chen FU2,Wei FAN2,Ju MA2
1.Longyan Technician College, Longyan 364000, China
2.College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
Download: HTML     PDF(3715KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the limited output stroke of piezoelectric actuator and piezoelectric driving platform, a triangular hybrid two-stage lever micro-displacement amplification mechanism was designed. Firstly, the displacement amplification formula of the micro-displacement amplification mechanism was deduced theoretically, and the displacement amplification ratio was obtained; secondly, the sensitivity of fulcrum hinges of two-stage lever structure with different types to applied load was analyzed; finally, the static and dynamic simulation of the mechanism was carried out by using ANSYS software, and the relative parasitic motion ratio and natural frequency of the mechanism were analyzed. The results showed that when the straight beam hinge was selected as the fulcrum hinge of the two-stage lever structure, the mechanism was more sensitive to the applied load; the relative error between the theoretical value and the simulation value of the mechanism displacement amplification ratio was 9.56%, the relative parasitic motion ratio was 0.348 2,and the first natural frequency was the best. The designed micro-displacement amplification mechanism has relatively small parasitic displacement, relatively strong anti-interference capability and relatively good dynamic performance. The research result provides a certain theoretical guidance for the piezoelectric driver or fast mirror support structure to realize a large range of displacement output.



Key wordstriangular hybrid two-stage lever      finite element analysis      parasitic displacement      natural frequency     
Received: 26 April 2021      Published: 06 May 2022
CLC:  TH 12  
Cite this article:

Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism. Chin J Eng Design, 2022, 29(2): 161-167.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.019     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/161


三角混合两级杠杆微位移放大机构的设计及性能分析

针对压电执行器和压电驱动平台输出行程有限的问题,设计了一种三角混合两级杠杆微位移放大机构。首先,理论推导了该微位移放大机构的位移放大公式,得到了位移放大比;其次,分析了不同类型两级杠杆结构支点铰链对施加载荷的敏感性;最后,利用ANSYS软件对机构进行静力学和动力学仿真,对机构的相对寄生运动比和固有频率进行了分析。结果表明:当选取直梁形铰链作为两级杠杆结构的支点铰链时,机构对施加载荷的敏感性较强;机构位移放大比理论值与仿真值的相对误差为9.56%,相对寄生运动比为0.348 2,且1阶固有频率最佳。所设计的微位移放大机构具有较小的寄生位移、较强的抗干扰能力和较好的动力学性能。研究结果为压电驱动器或快速反射镜支撑结构实现大量程的位移输出提供了一定的理论指导。


关键词: 三角混合两级杠杆,  有限元分析,  寄生位移,  固有频率 
Fig.1 Structure of triangular hybrid two-stage lever micro-displacement amplification mechanism
Fig.2 Schematic of working principle of triangular hybrid two-stage lever micro-displacement amplification mechanism
Fig.3 Schematic of working principle of triangular structure and two-stage lever structure
参数tRdL1L2L3L6
数值0.41.252.52081020
Table 1 Structural parameters of triangular hybrid two-stage lever micro-displacement amplification mechanism
输入载荷/MPa最大应力/MPa最大输出位移/um
直圆形铰链直圆长形铰链直梁形铰链直圆形铰链直圆长形铰链直梁形铰链
0.494.471111.49121.0854.94182.67385.379
0.8188.94222.99242.17109.88146.97170.76
1.2283.41334.48363.25164.82248.02256.14
1.6377.88445.97484.34219.76330.69341.52
2.0472.36557.47605.42274.70413.36426.89
Table 2 Finite element simulation results of maximum stress and maximum output displacement of triangular hybrid two-stage lever micro-displacement amplification mechanism under different input loads
Fig.4 Maximum stress and maximum output displacement of triangular hybrid two-stage lever micro-displacement amplification mechanism with input load of 20 MPa
Fig.5 Stress nephogram and total output displacement of triangular hybrid two-stage lever micro-displacement amplification mechanism when Δx=10 μm
Fig.6 The first six modes of triangular hybrid two-stage lever micro displacement amplification mechanism
模态第1阶第2阶第3阶第4阶第5阶第6阶
固有频率305.90376.43413.20471.481 098.201 163.40
Table 3 Natural frequency of triangular hybrid two-stage lever micro displacement amplification mechanism
[1]   贠远,徐青松,李杨民.并联微操作机器人技术及应用进展[J].机械工程学报,2008,44 (12):12-23. doi:10.3901/JME.2008.12.012
YUN Yuan, XU Qing-song, LI Yang-ming. Parallel micro-manipulation robot technology and application progress[J]. Journal of Mechanical Engineering, 2008, 44(12): 12-23.
doi: 10.3901/JME.2008.12.012
[2]   OUYANG P R, ZHANG W J, GUPTA M M, et al. Overview of the development of a visual based automated bio-micromanipulation systems[J]. Mechatronics, 2007, 17(10): 578-588. doi:10.1016/j.mechatronics.2007. 06.002
doi: 10.1016/j.mechatronics.2007. 06.002
[3]   李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13. doi:10.3901/JME.2011.23.001
LI Yang-ming, TANG Hui, XU Qing-song, et al. The development trend of micro-manipulation robot technology for biomedical applications[J]. Journal of Mechanical Engineering, 2011, 47(23): 1-13.
doi: 10.3901/JME.2011.23.001
[4]   汪奎,辛宏伟,曹乃亮,等.空间相机快速反射镜的两轴柔性支撑结构设计[J].红外与激光工程,2019,48(12):233-240. doi:10.3788/IRLA201948.1214005
WANG Kui, XIN Hong-wei, CAO Nai-liang, et al. Design of two-axis flexible support structure of fast reflector for space camera[J]. Infrared and Laser Engineering, 2019, 48(12): 233-240.
doi: 10.3788/IRLA201948.1214005
[5]   刘敏,张宪民.基于类Ⅴ型柔性铰链的微位移放大机构[J].光学精密工程,2017,25(4):467-476.
LIU Min, ZHANG Xian-min. Micro-displacement magnifying mechanism based on V-type flexible hinge[J]. Optics and Precision Engineering, 2017, 25(4): 467-476.
[6]   卢倩,黄卫清,孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学精密工程,2016,24(1):102-111. doi:10.3788/OPE.20162401.0102
LU Qian, HUANG Wei-qing, SUN Meng-xin. Optimal design of lever-type flexure hinge magnifying mechanism based on flexibility ratio[J]. Optics and Precision Engineering, 2016, 24(1): 102-111.
doi: 10.3788/OPE.20162401.0102
[7]   赵磊,纪明,王佳,等.万向柔性铰链连接快速反射镜的设计与仿真[J].红外与激光工程,2019,48 (2):164-170. doi:10.3788/IRLA201948.0218002
ZHAO Lei, JI Ming, WANG Jia, et al. Design and simulation of fast reflector connected with universal flexible hinge[J]. Infrared and Laser Engineering, 2019, 48 (2): 164-170.
doi: 10.3788/IRLA201948.0218002
[8]   艾志伟,嵇建波,王鹏举,等.两轴柔性支承快速反射镜结构控制一体化设计[J].红外与激光工程,2020,49 (7):235-242.
AI Zhi-wei, JI Jian-bo, WANG Peng-ju, et al. Integrated design of two-axis flexible supporting fast reflector structure control[J]. Infrared and Laser Engineering, 2020, 49(7): 235-242.
[9]   杨志刚,刘登云,吴丽萍,等.应用于压电叠堆泵的微位移放大机构[J].光学精密工程,2007,15(6):884-888. doi:10.3321/j.issn:1004-924X.2007.06.014
YANG Zhi-gang, LIU Deng-yun, WU Li-ping, et al. Micro-displacement amplification mechanism applied to piezoelectric stack pump[J]. Optics and Precision Engineering, 2007, 15(6): 884-888.
doi: 10.3321/j.issn:1004-924X.2007.06.014
[10]   魏传新,陈洪达,尹达一.基于响应面法的交叉簧片铰链微位移机构优化设计[J].红外与激光工程,2016,45 (10):177-185.
WEI Chuan-xin, CHEN Hong-da, YIN Da-yi. Optimization design of cross-spring hinge micro-displacement mechanism based on response surface method[J]. Infrared and Laser Engineering, 2016, 45(10): 177-185.
[11]   于靖军,郝广波,陈贵敏,等.柔性机构及其应用研究进展[J].机械工程学报,2015,51(13):53-68.
YU Jin-jun, HAO Guang-bo, CHEN Gui-min, et al. Research progress of flexible mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68.
[12]   GOLDFARB M, SPEICH J. A well-behaved revolute flexure joint for compliant mechanism design[J]. Journal of Mechanical Design, 1999, 121(3): 424-429. doi:10.1115/1.2829478
doi: 10.1115/1.2829478
[13]   王明远,杭鲁滨,黄晓波,等.含孔隙结构的新型直梁型柔性铰链研究[J].机械科学与技术,2020,39(1):102-108.
WANG Ming-yuan, HANG Lu-bin, HUANG Xiao-bo. Study on a new type of straight beam flexible hinge with pore structure[J]. Mechanical Science and Technology, 2020, 39(1): 102-108.
[14]   陈晓东,胡思雅,邓子龙,等.基于刚度关系的柔性压电微夹钳设计[J].传感器与微系统,2020,39 (9):108-111.
CHEN Xiao-dong, HU Si-ya, DENG Zi-long. Design of flexible piezoelectric micro clamp based on stiffness relationship[J]. Sensors and Microsystems, 2020, 39(9): 108-111.
[15]   KIIKUCHI N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1487-1502. doi:10.1002/nme. 1620350707
doi: 10.1002/nme. 1620350707
[16]   倪迎雪,伞晓刚,高世杰,等.新型混合柔性铰链柔度研究[J].红外与激光工程,2016,45 (10):226-231.
NI Ying-xue, Xiao-gang SAN, GAO Shi-jie, et al. Research on flexibility of new hybrid flexure hinge[J]. Infrared and Laser Engineering, 2016, 45(10): 226-231.
[17]   余跃庆,李清清.一种新型柔性铰链的设计、制作与试验研究 [J].机械工程学报,2018,54 (13):79-85.
YU Yue-qing, LI Qing-qing. Design, manufacture and experimental research of a new type of flexible hinge[J]. Journal of Mechanical Engineering, 2018, 54(13): 79-85.
[18]   张法业,姜明顺,隋青美,等.基于柔性铰链结构的高灵敏度低频光纤光栅加速度传感器[J].红外与激光工程,2017,46 (3):260-267.
ZHANG Fa-ye, JIANG Ming-shun, SUI Qing-mei, et al. High sensitivity low frequency fiber grating acceleration sensor based on flexible hinge structure[J]. Infrared and Laser Engineering, 2017, 46(3): 260-267.
[19]   CHIO S B, HAN S S, HAN Y M, et al. Analysis of the displacement amplification ratio of bridge-type flexure hinge[J]. Sensors and Actuators A: Physical, 2006, 132(2): 730-736. doi:10.1016/j.sna.2005.12.028
doi: 10.1016/j.sna.2005.12.028
[20]   柳华,刘伟奇,冯睿,等.新型全柔性动镜机构的设计与分析[J].红外与激光工程,2012,41(1):184-189. doi:10.3969/j.issn.1007-2276.2012.01.036
LIU Hua, LIU Wei-qi, FENG Rui, et al. Design and analysis of a new type of fully flexible moving mirror mechanism[J]. Infrared and Laser Engineering, 2012, 41(1): 184-189.
doi: 10.3969/j.issn.1007-2276.2012.01.036
[21]   张明月,杨洪波.基于大位移柔性结构的动镜支撑机构设计及研究[J].红外与激光工程,2014,43(8):2595-2601. doi:10.3969/j.issn.1007-2276.2014.08.033
ZHANG Ming-yue, YANG Hong-bo. Design and research of moving mirror support mechanism based on large displacement flexible structure[J]. Infrared and Laser Engineering, 2014, 43(8): 2595-2601.
doi: 10.3969/j.issn.1007-2276.2014.08.033
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chin J Eng Design, 2023, 30(4): 467-475.
[3] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[4] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chin J Eng Design, 2022, 29(6): 684-694.
[5] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[6] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[7] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[8] Ya-ping DU,Chun-hua ZHAO,Jia-hui GUO,Chuan ZHOU,Li-qiang ZHANG. Kinematic and dynamic analysis of pseudo-rigid body model of compliant dwell mechanism[J]. Chin J Eng Design, 2022, 29(2): 202-211.
[9] WEI Jian-bao, LI Song-mei, XU Yu-tian. Analysis of torsional vibration characteristics of tripod-ball cage double universal coupling[J]. Chin J Eng Design, 2021, 28(4): 458-465.
[10] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chin J Eng Design, 2021, 28(4): 504-510.
[11] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chin J Eng Design, 2021, 28(2): 227-234.
[12] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chin J Eng Design, 2021, 28(1): 95-104.
[13] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chin J Eng Design, 2021, 28(1): 25-32.
[14] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chin J Eng Design, 2020, 27(6): 713-719.
[15] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chin J Eng Design, 2020, 27(2): 182-190.