Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 202-211    DOI: 10.3785/j.issn.1006-754X.2022.00.021
Modeling, Simulation, Analysis and Decision     
Kinematic and dynamic analysis of pseudo-rigid body model of compliant dwell mechanism
Ya-ping DU(),Chun-hua ZHAO(),Jia-hui GUO,Chuan ZHOU,Li-qiang ZHANG
School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
Download: HTML     PDF(1412KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the large deformation, large deflection and other geometric nonlinear behaviors of the flexible component of the compliant dwell mechanism in motion, the pseudo-rigid body model method was used to analyze this kind of nonlinear large deformation system. Firstly, based on large deflection theory, the buckling analysis of large deformation flexible beam was carried out. The first and second kinds of elliptic integral were used to simulate the flexible beam whose initial state was straight beam, and the load-displacement relation formula was obtained by polynomial fitting. Combined with boundary conditions and force characteristics, the equivalent nonlinear spring pseudo-rigid body model of flexible beam was obtained. On this basis, the kinematic equation of the mechanism was established by using Newton's law, the position of the slider when the crank rotated at a uniform speed was obtained by MATLAB/Simulink modeling and simulation. So the slider displacement curve with double stop characteristics of the mechanism was obtained, the relationship between the slider displacement and time and crank angle was revealed, and the accuracy of the theoretical model was verified by ADAMS(automatic dynamic analysis of mechanical systems) simulation. Secondly, in order to improve the operation accuracy and working performance of the compliant dwell mechanism, its frequency characteristics were studied. Using Lagrange equation, the dynamic model of the mechanism was established from the whole, the analytical expression of the natural frequency of the compliant dwell mechanism was derived, and the influence of section parameters of flexible long beam, length of flexible beam and material performance parameters on the natural frequency of the mechanism were analyzed. The results showed that different parameters had different influences on the natural frequency of the mechanism, so the influences of various parameters on the dynamic characteristics of the mechanism should be comprehensively considered in the optimal design of the compliant dwell mechanism. The research results lay a foundation for the optimal design of compliant dwell mechanism.



Key wordscompliant dwell mechanism      large deflection theory      pseudo-rigid body model      motion characteristic      natural frequency     
Received: 02 March 2021      Published: 06 May 2022
CLC:  TH 113  
Corresponding Authors: Chun-hua ZHAO     E-mail: duyaping1209@foxmail.com;zchh226@163.com
Cite this article:

Ya-ping DU,Chun-hua ZHAO,Jia-hui GUO,Chuan ZHOU,Li-qiang ZHANG. Kinematic and dynamic analysis of pseudo-rigid body model of compliant dwell mechanism. Chin J Eng Design, 2022, 29(2): 202-211.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.021     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/202


柔顺停歇机构伪刚体模型的运动学和动力学分析

针对柔顺停歇机构的柔性构件在运动中产生的大变形、大挠度等几何非线性行为,采用伪刚体模型法来分析该类非线性大变形系统。首先,基于大挠度理论对大变形柔性梁进行屈曲分析,运用第一、第二类椭圆积分模拟初始状态为直梁的柔性梁,用多项式拟合得到其载荷—位移关系式。结合边界条件与受力特性,得到柔性梁的等效非线性弹簧伪刚体模型。在此基础上,运用牛顿定律建立机构运动学方程,通过MATLAB/Simulink建模仿真求得曲柄匀速转动时滑块的位置,得到机构具有双停歇特性的滑块位移曲线,揭示了滑块位移与时间以及曲柄转角之间的关系,并通过ADAMS (automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)仿真验证了理论模型的准确性。其次,为了提高柔顺停歇机构的操作精度和工作性能,对其频率特性进行研究。运用Lagrange方程从机构整体出发建立其动力学模型,推导出柔顺停歇机构固有频率的解析表达式,分析了柔性长梁的截面参数、柔性梁长度和材料性能参数对机构固有频率的影响。结果表明,不同的参数对机构固有频率的影响是不同的,因此在进行柔顺停歇机构的优化设计时要综合考虑各参数对机构动力特性的影响。研究结果为柔顺停歇机构的优化设计奠定了一定基础。


关键词: 柔顺停歇机构,  大挠度理论,  伪刚体模型,  运动特性,  固有频率 
Fig.1 Schematic diagram of compliant dwell mechanism
参数数值
弹性模量E/Pa3.5×109
密度ρ/(g/cm31.25
泊松比μ0.36
柔性长梁长l3×宽b3×厚h3/mm×mm×mm200×20×1.06
柔性短梁长l5×宽b5×厚h5/mm×mm×mm110×15×0.86
曲柄长度r2 /mm70
曲柄质量m2/kg0.1
滑块质量m6/kg0.3
Table 1 Relevant parameters of compliant dwell mechanism
Fig.2 Stress of flexible long beam
Fig.3 Deformation of flexible long beam
Fig.4 Load-displacement curve of flexible long beam
Fig.5 Pseudo-rigid body model of flexible beam
Fig.6 Pseudo-rigid body model of compliant dwell mechanism
Fig.7 Position analysis of the slider
Fig.8 Stress of the slider
Fig.9 Mathematical model of mechanism motion with crank angle as input and slider displacement as output
Fig.10 Variation curve of slider displacement with time
Fig.11 Variation curve of slider displacement with crank angle
Fig.12 Influence of section thickness of flexible long beam on natural frequency of mechanism
Fig.13 Influence of section width of flexible rod on natural frequency of mechanism
Fig.14 Influence of length of flexible long beam on natural frequency of mechanism
Fig.15 Influence of the length of flexible short beam on natural frequency of mechanism

柔性梁

材料

E/GPaρ/(g/cm3Eρ/103N?mkg12ω/Hz
聚丙烯1.380.901.238 285.378 5
聚乳酸3.501.251.673 328.563 9
铍青铜1268.303.896 2423.594 2
钛合金1144.405.090 1038.729 3
铝合金71.72.715.143 6948.789 1
弹簧钢2077.685.191 6457.624 0
Table 2 Natural frequency of mechanism with different flexible beam materials
Fig.16 Influence of the value of Eρ on natural frequency of mechanism
[1]   HOWELL L L. Compliant Mechanisms[M]. New York: John Wiley & Sons, 2001: 97-129.
[2]   王雯静,余跃庆,王华伟.柔顺机构国内外研究现状分析[J].机械设计,2007(6):1-4. doi:10.3969/j.issn.1001-2354.2007.06.001
WANG Wen-jing, YU Yue-qing, WANG Hua-wei, et al. Analysis on the research status of compliant mechanism at home and abroad[J]. Journal of Machine Design, 2007(6): 1-4.
doi: 10.3969/j.issn.1001-2354.2007.06.001
[3]   孔垂旺,陈为林,卢清华,等.单级柔顺正交位移放大机构非线性建模与优化[J].工程设计学报,2020,27(1):76-86. doi:10.3785/j.issn.1006-754X.2020.00.014
KONG Chui-wang, CHEN Wei-lin, LU Qing-hua,et al. Nonlinear modeling and optimization of single-stage compliant orthogonal displacement amplification mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(1): 76-86.
doi: 10.3785/j.issn.1006-754X.2020.00.014
[4]   李鹏飞,曹博宇,汪振宇,等.含非线性大变形构件的柔顺机构建模与分析[J].振动与冲击,2019,38(11):111-115.
LI Peng-fei, CAO Bo-yu, WANG Zhen-yu, et al. Modeling and analysis for compliant mechanisms with nonlinear large deformation components[J]. Journal of Vibration and Shock, 2019, 38(11): 111-115
[5]   LING M, HOWELL L L. CAO J,et al. A pseudo-static model for dynamic analysis on frequency domain of distributed compliant mechanisms[J]. Journal of Mechanisms and Robotics, 2018, 10(5): 5-11. doi:10. 1115/1.4040700
doi: 10. 1115/1.4040700
[6]   李渊,杜秋月.末端加载力矩的初始弯曲柔性梁1R伪刚体模型[J].机械传动,2018,42(10):41-45,51.
LI Yuan, DU Qiu-yue. 1R pseudo-rigid-body model of initially curved flexible beam with end loaded moment[J]. Journal of Mechanical Transmission, 2018, 42(10): 41-45, 51.
[7]   李茜,余跃庆,常星.基于2R伪刚体模型的柔顺机构动力学建模及特性分析[J].机械工程学报,2012,48(13): 40-48. doi:10.3901/jme.2012.13.040
LI Qian, YU Yue-qing, CHANG Xing, et al. Dynamic modeling and analysis of compliant mechanisms based on 2R pseudo-rigid-body model[J]. Journal of Mechanical Engineering, 2012, 48(13): 40-48.
doi: 10.3901/jme.2012.13.040
[8]   田亚平,康军凤.基于3R伪刚体模型的柔顺杆动力学建模及分析[J].机械传动,2013,37(5):75-78.
TIAN Ya-ping, KANG Jun-feng. Dynamics modeling and analysis of compliant bar based on 3R pseudo-rigid-body model[J]. Journal of Mechanical Transmission, 2013, 37(5): 75-78.
[9]   余跃庆,徐齐平.柔顺机构PR伪刚体动力学建模与特性分析[J].农业机械学报,2013,44(3):231-235. doi:10.6041/j.issn.1000-1298.2013.03.041
YU Yue-qing, XU Qi-ping. Dynamic modeling and characteristic analysis of compliant mechanisms based on PR pseudo-rigid-body model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 231-235.
doi: 10.6041/j.issn.1000-1298.2013.03.041
[10]   路建鹏,薄瑞峰,孙楷,等.柔顺机构PRR伪刚体模型的研究[J].机械设计与制造,2016(4):114-117. doi:10.3969/j.issn.1001-3997.2016.04.030
LU Jian-peng, BO Rui-feng, SUN Kai, et al. PRR pseudo-rigid-body model of compliant mechanisms[J]. Machinery Design & Manufacture, 2016(4): 114-117.
doi: 10.3969/j.issn.1001-3997.2016.04.030
[11]   朱延飞,王刚.组合连杆机构的停歇特性分析及优化设计[J].机械管理开发,2008,23(5):51-52. doi:10.3969/j.issn.1003-773X.2008.05.026
ZHU Yan-fei, WANG Gang. Analysis of dwelling char acteristic and optimum design of a bar linkage[J]. Mechanical Management and Development, 2008, 23(5): 51-52.
doi: 10.3969/j.issn.1003-773X.2008.05.026
[12]   袁健博.平面连杆停歇机构设计探究[J].现代职业教育,2019(13):112-113.
YUAN Jian-bo. Research on the design of plane link stopping mechanism[J]. Modern Vocational Education, 2019 (13): 112-113.
[13]   张元越.基于曲柄齿轮齿条的串联导杆机构高阶停歇的传动设计与研究[J].机械设计,2011,28(3):6-8.
ZHANG Yuan-yue. Drive design and research on high ordered intermittence of series guide-bar mechanism based on crank gear rack mechanism[J]. Journal of Mechine Design, 2011, 28(3): 6-8.
[14]   LI Z, KOTA S. Dynamic analysis of compliant mechanisms[J]. American Society of Mechanical Engineers, 2002, 3(4): 43-50. doi:10.1115/detc2002/mech-34205
doi: 10.1115/detc2002/mech-34205
[15]   SONMEZ Ü. Introduction to compliant long dwell mechanism designs using buckling beams and arcs[J]. Journal of Mechanical Design, 2007, 129(8): 831-843. doi:10.1115/1.2735337
doi: 10.1115/1.2735337
[16]   TEKES A, SONMEZ Ü, GUVENC B A. Compliant folded beam suspension mechanism control for rotational dwell function generation using the state feedback lineari zation scheme[J]. Mechanism and Machine Theory, 2010, 45(12): 1924-1941. doi:10.1016/j.mechmachtheory. 2010. 07.005
doi: 10.1016/j.mechmachtheory. 2010. 07.005
[17]   TEKES A, LIN H, Design MCFALL K., modelling and experimentation of a novel compliant translational dwell mechanism[J]. Journal of Mechanical Science and Technology, 2019, 33(7): 3137-3145. doi:10.1007/s12206-019-0609-2
doi: 10.1007/s12206-019-0609-2
[18]   SONMEZ Ü. Synthesis methodology of a compliant exact long dwell mechanism using elastica theory[J]. International Journal of Mechanics and Materials in Design, 2006, 3(1): 73-90. doi:10.1007/s10999-006-9014-y
doi: 10.1007/s10999-006-9014-y
[19]   徐先洋,应小刚,邵世明,等.平面柔顺机构力学特性的研究进展[J].机械制造,2016,54(6):89-92. doi:10.3969/j.issn.1000-4998.2016.06.029
XU Xian-yang, YING Xiao-gang, SHAO Shi-ming, et al. Research progress on mechanical characteristics of planar compliant mechanisms[J]. Machinery, 2016, 54(6): 89-92.
doi: 10.3969/j.issn.1000-4998.2016.06.029
[20]   陈知泰,余跃庆,杜兆才,等.柔顺机构的频率特性分析[J].机械设计与研究,2005,21(6):24-26. doi:10.3969/j.issn.1006-2343.2005.06.006
CHEN Zhi-tai, YU Yue-qing, DU Zhao-cai,et al. Analysis of frequency for compliant mechanisms[J]. Machine Design and Research, 2005, 21(6): 24-26.
doi: 10.3969/j.issn.1006-2343.2005.06.006
[21]   钱若军,袁行飞,谭元莉.结构屈曲分析理论和方法[M].南京:东南大学出版社,2018:105-109.
QIAN Ruo-jun, YUAN Xing-fei, TAN Yuan-li. Theory and method of structural buckling analysis[M]. Nanjing: Southeast University Press, 2018: 105-109.
[1] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chin J Eng Design, 2022, 29(2): 161-167.
[2] WEI Jian-bao, LI Song-mei, XU Yu-tian. Analysis of torsional vibration characteristics of tripod-ball cage double universal coupling[J]. Chin J Eng Design, 2021, 28(4): 458-465.
[3] LI Xiang, WANG Yang, TONG Guan, CHEN Bo-wen, HE Bin. Study on vibration characteristics of new quasi-square honeycomb sandwich structure with all edges simply supported[J]. Chin J Eng Design, 2018, 25(6): 725-734.
[4] HE Yu-min, CHENG Wan-ying, ZHU Bao-hui, XU Huan-huan. Study on the measurement method of crack flexibility for rectangular beam[J]. Chin J Eng Design, 2017, 24(6): 618-623.
[5] LI Xue-Peng, WANG Ai-Lun. Research on performance degradation of combined rotor considering the fatigue crack in the rod[J]. Chin J Eng Design, 2014, 21(4): 382-388.
[6] SU Yong-lei,WANG Ai-lun,LI Xue-peng,GAO Si-xiao, ZHANG Ying-ying. Effect of rod relaxation upon performance degradation of combined rotor for gas turbine[J]. Chin J Eng Design, 2014, 21(3): 245-250.
[7] BU Ying-Yong, WANG Jin-Yu, ZHU Li-Bin. Analysis of the vibration of steel-rope of monocable circulating carrying tramway[J]. Chin J Eng Design, 2011, 18(1): 67-70.