Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 153-160    DOI: 10.3785/j.issn.1006-754X.2022.00.023
Innovative Design     
Modular design and safety analysis of mountain geophysical electric drilling rig
Zhi-qiang HUANG1,2(),Hong-mei YU1,2,Ya-chao MA1,2,Dou XIE1,2,Cao ZHOU1,2
1.School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China
2.Key Laboratory of Petroleum and Natural Gas Equipment of the Ministry of Education,Southwest Petroleum University,Chengdu 610500,China
Download: HTML     PDF(2274KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The mountain geophysical drilling rig driven by fuel engine has loud noise, serious exhaust emission, low drilling efficiency and inconvenient disassembling and handling. In order to solve the above problems, the modular design scheme of mountain geophysical electric drilling rig was put forward by using electric energy drive instead of fuel engine drive. Based on the fuzzy comprehensive evaluation method, the quantitative evaluation of the driving motor and transmission mode of the electric drilling rig was carried out, so it was determined that the driving motor was permanent magnet synchronous motor and the transmission mode was sprocket chain transmission. At the same time, through comparison, turbo worm reducer, π-shaped chassis and single mast were respectively selected as reducer, support parts and guide parts of the electric drilling rig. On this basis, the safety analysis of electric drilling rig was carried out using finite element analysis. The results showed that the maximum stress of the drilling rig occured at the right angle of the π-shaped chassis connecting the mast, which was less than the allowable stress of the drilling rig material. It also indicated that the structure of the drilling rig was safe, and motor circuit was safe and reliable. The drilling test results showed that the quality of the independently designed mountain geophysical electric drilling rig was reduced by 57% compared with the existing mountain geophysical drilling rig. The drilling operation had low noise and no tail gas emission. The maximum lifting force and torque provided exceeded 71% and 6.25% of the design standard respectively, indicating that its overall performance met the requirements. The research results provide a reference forthe research and development of green and efficient oil and gas exploration equipment.



Key wordsmountain geophysical drilling rig      electric      fuzzy comprehensive evaluation method      safety analysis      field test     
Received: 26 March 2021      Published: 06 May 2022
CLC:  TE 922  
Cite this article:

Zhi-qiang HUANG,Hong-mei YU,Ya-chao MA,Dou XIE,Cao ZHOU. Modular design and safety analysis of mountain geophysical electric drilling rig. Chin J Eng Design, 2022, 29(2): 153-160.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.023     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/153


山地物探电动钻机模块化设计及安全性分析

以燃油发动机驱动的山地物探钻机在钻井时噪声大,尾气排放严重,钻井效率低,拆装、搬运不便。为解决上述问题,以电能驱动代替燃油机驱动,提出了山地物探电动钻机模块化设计方案。基于模糊综合评价法,开展了电动钻机驱动电机和传动方式的定量评价,确定其驱动电机为永磁同步电机,传动方式为链轮链条传动,同时通过对比优选出电动钻机的减速器、支撑部件和导向部件分别为涡轮蜗杆减速器、π形底盘和单桅杆。在此基础上,采用有限单元分析方法进行了电动钻机的安全性分析,结果表明:钻机的最大应力出现在π形底盘连接桅杆的直角处,其值小于钻机材料的许用应力,钻机的结构安全,且电机电路安全可靠。钻井实验结果表明:自主设计的山地物探电动钻机较现有山地物探钻机质量减小了57%,钻井作业时噪声低,无尾气排放,可提供的最大提升力和扭矩分别超过设计标准的71%与6.25%,表明其整体性能符合要求。研究结果为绿色高效的油气勘探装备的研发提供了参考。


关键词: 山地物探钻机,  电动,  模糊综合评价法,  安全分析,  现场实验 
对比项直流电机异步电机永磁同步电机开关磁阻电机
比功率较高
峰值效率/%85~8994~9595~9790
负荷效率/%80~8790~9285~9778~96
功率因素/%82~8590~9360~65
恒功率区1:51:2.251:3
转速范围/(r/min)4 000~6 00012 000~15 0004 000~10 000>15 000
可靠性一般良好良好
结构坚固性一般良好
电机外廓与质量
电机成本
控制操作性能良好良好良好
控制器成本
Table 1 Comparison of drive motor characteristics
传动方式优点缺点

滚珠丝杠

传动

摩擦系数小,传动效率高;启动扭矩接近运转扭矩,传动较平稳;可用调节装置调节间隙,以提高传动精度与刚度;磨损小,寿命长不具备自锁性;制造工艺复杂,成本高

涡轮丝杠

传动

结构紧凑,体积小,质量小;噪声小,可靠性高;使用方便,使用寿命长提升速度较小,工作效率较低

链轮链条

传动

结构紧凑,传动效率高,链轮链条对轴和轴承的作用力小;能在温度较高、有油污等恶劣环境下工作;制造和安装精度要求较低传动平稳性较差,运转瞬时速度不稳定;工作时有一定的冲击和噪声;链节距较大,维修成本较高
带传动带具有弹性,可缓和冲击和振动,传动平稳,无噪声;当过载时,带即在轮上打滑,可防止其他零件损坏;结构简单,安装方便,成本低有滑动,传动比不恒定;带对轴和轴承的作用力较大;带的外廓尺寸较大;寿命较短
Table 2 Comparison of advantages and disadvantages of transmission mode
对比项摆线针轮减速器涡轮蜗杆减速器
传动比9~875~80
体积和质量
过载能力
工作效率/%9460~70
噪声
自锁性
安装和维修复杂度
成本
Table 3 Comparison of reducer performance
Fig.1 Chassis design
底盘

长×宽×高/

mm×mm×mm

质量/kg与桅杆连接方式
K形底盘1 600×1 000×18052螺栓连接
π形底盘1 350×900×17532销轴连接
Table 4 Chassis parameters
Fig.2 Mast design
方案综合评价得分排序
直流电机0.6484
异步电机0.7353
永磁同步电机0.9811
开关磁阻电机0.7472
Table 5 Fuzzy comprehensive evaluation result of four kinds of motors
方案综合评价得分排序
滚珠丝杠传动0.7373
涡轮丝杠传动0.7154
链轮链条传动0.7801
带传动0.7482
Table 6 Fuzzy comprehensive evaluation result of four kinds of transmission modes
Fig.3 Simulation model of mountain geophysical electric drilling rig
Fig.4 Deformation nephogram of mountain geophysical electric drilling rig
Fig.5 Stress nephogram of mountain geophysical electric drilling rig
Fig.6 Variation curve of maximum deformation of mountain geophysical electric drilling rig with time
Fig.7 Variation curve of maximum stress of mountain geophysical electric drilling rig with time
Fig.8 Drilling test site of mountain geophysical electric drilling rig
[1]   李家华,闫世普,蔡陆阳,等.山地钻机液压马达轴承拆装工具[J].工程机械与维修,2018(2):74-75. doi:10.3969/j.issn.1006-2114.2018.02.029
LI Jia-hua, YAN Shi-pu, CAI Lu-yang, et al. Mountainous drilling machine hydraulic motor bearing disassembly tool[J]. Construction Machinery and Maintenance, 2018(2): 74-75.
doi: 10.3969/j.issn.1006-2114.2018.02.029
[2]   丛晶日.WT50物探钻机设计与分析[D].大庆:东北石油大学,2011:4-5.
CONG Jing-ri. Design and analysis of geophysical rig[D]. Daqing: Northeast Petroleum University, 2011: 4-5.
[3]   王毅.新型轻便旋转式物探钻机总体设计及动力学分析[D].西安:西安石油大学,2017:1-6.
WANG Yi. Overall design and dynamic analysis of a new type of portable rotary geophysical drilling rig[D]. Xi'an: Southwest Petroleum University, 2017: 1-6.
[4]   李国宏,丁晓鹏,裴志明,等.浅谈钻机的噪声控制[J].石油矿场机械,2003,32(4):52-53. doi:10.3969/j.issn.1001-3482.2003.04.021
LI Guo-hong, DING Xiao-peng, PEI Zhi-ming, et al. Brief analysis on noise control of rigs[J]. Oil Field Equipment, 2003, 32(4): 52-53.
doi: 10.3969/j.issn.1001-3482.2003.04.021
[5]   贺子延,杨凤申,刘坤.新型轻便气动钻机的开发与应用[J].物探装备,2018,28(2):108-111. doi:10.3969/j.issn.1671-0657.2018.02.010
HE Zi-yan, YANG Feng-shen, LIU Kun. Development and application of new portable pneumatic drill[J]. Geophysical Prospecting Equipment, 2018, 28(2): 108-111.
doi: 10.3969/j.issn.1671-0657.2018.02.010
[6]   樊慧文,李玲毓,张向前.新型山地钻机的开发与应用[J]. 物探装备,2012,22(3):145-148,156. doi:10.3969/j.issn.1671-0657.2012.03.002
FAN Hui-wen, LI Ling-yu, ZHANG Xiang-qian. New portable drill rig development and application[J]. Geophysical Prospecting Equipment, 2012, 22(3): 145-148, 156.
doi: 10.3969/j.issn.1671-0657.2012.03.002
[7]   杨凤申,刘坤,陈宪战,等.80 m山地钻机的开发与应用[J]. 物探装备,2011,21(1):10-12.
YANG Feng-shen, LIU Kun, CHEN Xian-zhan, et al. Development and application of mountain rig with 80 m drilling depth[J]. Geophysical Prospecting Equipment, 2011, 21(1): 10-12.
[8]   白文翔.活塞式空压机在山地物探爆破孔施工中的应用研究[D].长春:吉林大学,2005:3-9.
BAI Wen-xiang. Application research on piston air compressor in country mountain physical prospecting blast hole construction[D]. Changchun: Jilin University, 2005: 3-9.
[9]   郑红.滚珠丝杠传动机构的支承与轴端结构分析[J].现代制造技术与装备,2019(5):1-3. doi:10.3969/j.issn.1673-5587.2019.05.003
ZHENG Hong. Support and shaft structure analysis of ball screw transmission mechanism[J]. Modern Manufacturing Technology Equipment, 2019(5): 1-3.
doi: 10.3969/j.issn.1673-5587.2019.05.003
[10]   田辉,曼茂立,苏晨阳,等.一种基于耦合追踪策略的太阳追踪系统设计[J].科技创新与应用,2016(34): 28-29.
TIAN Hui, MAN Mao-li, SU Chen-yang, et al. A solar tracking system design based on coupled tracking strategy[J]. Technology Innovation and Application, 2016(34): 28-29.
[11]   孙新城,陈建能,武传宇,等.三轮非圆同步带传动试验台设计与应用[J].农业机械学报,2021,52(1):73-81. doi:10.6041/j.issn.1000-1298.2021.01.008
SUN Xin-cheng, CHEN Jian-neng, WU Chuan-yu, et al. Design and test of three-pulley noncircular synchronous belt transmission test rig[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):73-81.
doi: 10.6041/j.issn.1000-1298.2021.01.008
[12]   TAO Jiang, YI Ping-you, GUANG Yan-xue, et al. Research on the dynamic characteristics of mast mechanism of rotary drilling rig[J]. Procedia Engineering, 2011, 16: 763-771. doi:10.1016/j.proeng. 2011.08.1152
doi: 10.1016/j.proeng. 2011.08.1152
[13]   满忠委,庞玉,付衍法,等.旋挖钻机桅杆结构优化分析[J]. 建筑机械化, 2013(5):3. doi:10.4028/www.scientific.net/amm.48-49.783
MAN Zhong-wei, PANG Yu, FU Yan-fa, et al. Structure optimization analysis for mast of rotary drilling rig[J]. Construction Mechanization, 2013(5): 3.
doi: 10.4028/www.scientific.net/amm.48-49.783
[14]   郑会芬.旋挖钻机桅杆的结构设计[J].中国机械,2014(24):172-173.
ZENG Hui-Feng. Structure design of the mast of rotary drilling rig[J]. China Machinery, 2014(24): 172-173.
[15]   黄志强,马亚超,李琴,等.天然气管输减阻剂减阻效果现场评价方法研究[J].西南石油大学学报(自然科学版),2016,38(4):157-165.
HUANG Zhi-qiang, MA Ya-chao, LI Qin, et al. Method for field evaluation of drag reduction effect of natural gas drag reduction agent[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(4): 157-165.
[16]   严宇,李庚银,周明,等.基于模糊综合评价的交易结算偏差电量处理方法[J].电力系统自动化,2019,43(3): 200-204.
YAN Yu, LI Geng-yin, ZHOU Ming, et al. A method to deal with the deviation electric quantity of transaction settlement based on fuzzy comprehensive evaluation[J]. Automation of Electric Power System, 2019, 43(3): 200-204.
[17]   程志友,陶青,朱唯韦,等.基于改进模糊综合评判法的空压机状态评估[J].电测与仪表,2020,57(3):12-18.
CHENG Zhi-you, TAO Qing, ZHU Wei-wei, et al. State evaluation of air compressor based on improved fuzzy comprehensive evaluation method[J]. Electrical Measurement & Instrumentation, 2020, 57(3): 12-18.
[18]   蔡俊.齿轮齿条钻机系统动力学研究[D].荆州:长江大学, 2016:43-44.
CAI Jun. A dynamics research of rack and pinion drill rig system[D]. Jingzhou: Yangtze University, 2016: 43-44.
[1] Hongjie GUO,Shuya LIANG,Wenhua CHEN,Liqiang ZHONG,Zhewen CHEN,Jiahui YAN. Research on influence of wire spring inclination angle on storage life of wire spring hole electrical connector[J]. Chin J Eng Design, 2023, 30(3): 390-398.
[2] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[3] Zhi-qiang HUANG,Zhi-yong WANG,Shan HUANG,Fei-hu QIN,Jin YANG. Heat dissipation analysis and layout optimization of skid mounted module system of shale gas compressor[J]. Chin J Eng Design, 2022, 29(5): 555-563.
[4] Li-yong TIAN,Ye-xin SUN,Ning YU,Hong-yue CHEN,Chun-ying MA. Research on navigation system of roadheader based on combination mode[J]. Chin J Eng Design, 2022, 29(2): 254-262.
[5] Yan-kun QI,Hong WANG,Yong HE,Lü XIONG. Research on multi-component dual-objective group maintenance for electric multiple unit considering maintenance site[J]. Chin J Eng Design, 2022, 29(2): 168-175.
[6] Chun-lin WANG,Chang LIU,Hua YANG,Hong QIN,Guo-zhu CHEN. System design and analysis of electricity-replace-oil driving device for oil and gas exploration[J]. Chin J Eng Design, 2022, 29(2): 220-230.
[7] LUO Yan-yan, PAN Xiao-song, MA Xuan, WU Xiong-wei. Research on application of infrared thermal imaging technology in plug-in wear detection of electrical connector[J]. Chin J Eng Design, 2021, 28(5): 615-624.
[8] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chin J Eng Design, 2021, 28(4): 415-425.
[9] ZHANG Ze, CHEN Yong, LI Guang-xin, LEI Yong-gan, RUAN Ou, WANG Zai-zhou. Design and structure optimization of electro-hydraulic control system assembly of electric vehicle transmission[J]. Chin J Eng Design, 2021, 28(3): 335-343.
[10] TANG Wei-li, CHEN Yong-liang, LIU Li-ye. Identification method and application of weak modules of machine tool based on incremental analysis method[J]. Chin J Eng Design, 2021, 28(3): 312-320.
[11] ZENG Qi, BIN Guang-fu, LI Chao, CHEN Li-feng. Study on the influence of torsional stiffness of coupling on torsional vibration characteristics of slender series shafting of submersible oil electric pump[J]. Chin J Eng Design, 2021, 28(1): 89-94.
[12] ZHANG Xian-xu, LIU YI-ran, LI Li-jun. Research on acoustic metamaterial based on Helmholtz resonant cavity array[J]. Chin J Eng Design, 2020, 27(4): 441-447.
[13] REN Wen, LAI Sen-cai. Design of self-boosting energy-saving control circuit for piezoelectric jacquard warp knitting machine[J]. Chin J Eng Design, 2020, 27(3): 326-331.
[14] KONG De-shuai, HU Gao-feng, ZHANG Guan-wei, ZHANG Da-wei. Design and performance analysis of variable preload spindle based on piezoelectric actuator[J]. Chin J Eng Design, 2019, 26(6): 743-752.
[15] ZHANG Xiao-guang, GAO Fei-xiang, Lü Chuan-mao, HAN Dong. Research on design and performance of adaptive muffler system[J]. Chin J Eng Design, 2019, 26(6): 645-651.