Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 143-152    DOI: 10.3785/j.issn.1006-754X.2022.00.027
Innovative Design     
Somatosensory interactive upper-limb mirror rehabilitation training robot system
Qing-xiang LIU1(),Bing-jing GUO1,2(),Jian-hai HAN1,2,3,Xiang-pan LI1,2,Ming-xiang HUANG1
1.College of Mechanical and Electrical Engineering,Henan University of Science and Technology,Luoyang 471003,China
2.Henan Key Laboratory of Robotics and Intelligent Systems,Luoyang 471003,China
3.Henan Collaborative Innovation Center for Advanced Manufacturing of Mechanical Equipment,Luoyang 471003,China
Download: HTML     PDF(4176KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the loss of upper limb motor function caused by brain nerve injury in stroke patients, the robot assisted training combined with mirror therapy can effectively promote the remodeling of brain neurons by promoting the coordinated movement of bilateral limbs, so as to realize the recovery of motor function. Therefore, a somatosensory interactive upper-limb mirror rehabilitation training robot system was proposed by effectively combining the mirror rehabilitation theory, virtual reality technology and robot technology. The pose information of human healthy limb was collected by the motion capture equipment, and the motion trajectory of upper-limb rehabilitation training robot was mapped by designing a human-machine mirror motion mapping algorithm. Considering the flexibility of rehabilitation treatment, the robot joints were driven by oscillating cylinders based on proportional pressure control; at the same time, according to the characteristics of pneumatic system, the trajectory tracking control strategy of PD (proportional differential) + speed feedforward compensation was designed to realize the mirror rehabilitation training of coordinated movement of bilateral limbs. The feasibility and effectiveness of robot system in the mirror rehabilitation treatment were verified by the composite motion trajectory planning test and the mirror mirror rehabilitation training test for the robot system prototype. The designed robot system provides a design idea and implementation method for the clinical needs of rehabilitation training for the cooperative movement of human bilateral limbs.



Key wordsupper-limb rehabilitation training robot      mirror therapy      somatosensory interaction      proportional pressure control      motion mapping     
Received: 11 May 2021      Published: 06 May 2022
CLC:  TP 242.6  
Corresponding Authors: Bing-jing GUO     E-mail: 1627049654@qq.com;bingjing@haust.edu.cn
Cite this article:

Qing-xiang LIU,Bing-jing GUO,Jian-hai HAN,Xiang-pan LI,Ming-xiang HUANG. Somatosensory interactive upper-limb mirror rehabilitation training robot system. Chin J Eng Design, 2022, 29(2): 143-152.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.027     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/143


体感交互式上肢镜像康复训练机器人系统

针对脑卒中患者因大脑神经损伤而造成的上肢运动功能缺失,结合镜像疗法的机器人辅助训练可通过促使双侧肢协同运动来有效地促进大脑神经元重塑,从而实现运动功能恢复。为此,将镜像康复理论、虚拟现实技术和机器人技术有效结合,提出一种体感交互式上肢镜像康复训练机器人系统。使用动作捕捉设备采集患者健肢的位姿信息,通过设计人机镜像运动映射算法来映射上肢康复训练机器人的运动轨迹。考虑到康复治疗的柔性需要,该机器人的关节采用基于比例压力控制的摆动气缸来驱动;同时,针对气动系统的特性,设计了PD(proportional differential,比例微分)+速度前馈补偿的轨迹跟踪控制策略,实现了双侧肢协同运动的镜像康复训练。通过对机器人系统样机进行复合运动轨迹规划试验和镜像康复训练试验,验证了该系统在镜像康复治疗中的可行性和有效性。所设计的机器人系统为人体双侧肢协同运动的康复训练临床需求提供了设计思路和实现方法。


关键词: 上肢康复训练机器人,  镜像治疗,  体感交互,  比例压力控制,  运动映射 
Fig.1 Overall layout of somatosensory interactive upper-limb mirror rehabilitation training robot system
Fig.2 Control system block diagram of somatosensory interactive upper-limb mirror rehabilitation training robot
Fig.3 Block diagram of PD + speed feedforward compensation control strategy of pneumatic manipulator
Fig.4 Human-machine mirror motion mapping algorithm based on workspace
Fig.5 Structure diagram of two-degree-of-freedom pneumatic manipulator and coordinate system construction
Fig.6 Workspace of the end of pneumatic manipulator
Fig.7 Mirror mapping relationship of workspace between healthy limb end and pneumatic manipulator end
Fig.8 Somatosensory interactive upper limb mirror rehabilitation training robot system prototype test platform
关节KPKDKV
大臂关节0.240.0220.012
小臂关节0.400.0140.030
Table 1 PD + speed feedforward compensation control parameters of pneumatic manipulator
Fig.9 Trajectory comparison of pneumatic manipulator joints
Fig.10 Trajectory comparison of pneumatic manipulator end during drawing a circle
Fig.11 Comparison of X and Y directional trajectories of end and joint trajectories of pneumatic manipulator during drawing a circle
测试者末端位置误差/mm关节转动角度误差/(°)
平均误差均方根误差平均误差均方根误差
XYXY大臂小臂大臂小臂
11.54.31.65.40.81.50.781.3
21.13.51.42.20.71.20.60.9
Table 2 Trajectory tracking error of pneumatic manipulator during drawing a circle
Fig.12 Trajectory comparison of pneumatic manipulator end during rehabilitation training
[1]   荣积峰,丁力,张雯,等.康复机器人结合镜像疗法对脑卒中偏瘫患者上肢功能的效果[J].中国康复理论与实践,2019,25(6):709-713. doi:10.3969/j.issn.1006-9771.2019.06.016
RONG Ji-feng, DING Li, ZHANG Wen, et al. Effects of robot-assisted therapy combined with mirror therapy on upper limbs rehabilitation in patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2019, 25(6): 709-713.
doi: 10.3969/j.issn.1006-9771.2019.06.016
[2]   马玉静,勾丽洁,王文清.镜像视觉反馈在脑卒中患者上肢功能障碍康复中的应用[J].中国康复医学杂志,2016,31(3):358-362. doi:10.3969/j.issn.1001-1242.2016.03.024
MA Yu-jing, GOU Li-jie, WANG Wen-qing. Application of mirror visual feedback in rehabilitation of upper limb dysfunction in stroke patients[J]. Chinese Journal of Rehabilitation Medicine, 2016, 31(3): 358-362.
doi: 10.3969/j.issn.1001-1242.2016.03.024
[3]   梁天佳.脑卒中偏瘫上肢功能障碍康复治疗研究进展[J].广西医科大学学报,2018,35(7):1026-1028. doi:10.16190/j.cnki.45-1211/r.2018.07.034
LIANG Tian-jia. Research progress in rehabilitation treatment of upper limb dysfunction in stroke patients with hemiplegia[J]. Journal of Guangxi Medical University, 2018, 35(7): 1026-1028.
doi: 10.16190/j.cnki.45-1211/r.2018.07.034
[4]   梁爽,邹任玲,姜亚斌,等.镜像集成疗法的上肢康复训练技术研究进展[J].中国康复理论与实践,2017,23(1):59-62. doi:10.3969/j.issn.1006-9771.2017.01.014
LIANG Shuang, ZOU Ren-ling, JIANG Ya-bin, et al. Advance of mirror integrated therapy for upper limbs rehabilitation (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2017, 23(1): 59-62.
doi: 10.3969/j.issn.1006-9771.2017.01.014
[5]   KENJI S, SATOSHI F, TAKASHI M, et al. Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: an open-label pilot study[J]. Pain Medicine, 2010, 11(4): 622-629. doi:10.1111/j. 1526-4637.2010.00819.x
doi: 10.1111/j. 1526-4637.2010.00819.x
[6]   HOERMANN S, SANTOS L F D, MORKISCH N, et al. Computerized mirror therapy with augmented reflection technology for stroke rehabilitation: a feasibility study in a rehabilitation center[C]//2015 International Conference on Virtual Rehabilitation (ICVR), Valencia, Jun. 9-12, 2015. doi:10.1109/icvr.2015.7358575
doi: 10.1109/icvr.2015.7358575
[7]   BEOM J, KOH S, NAM H S, et al. Robotic mirror therapy system for functional recovery of hemiplegic arms[J]. Journal of Visualized Experiments, 2016(114): e54521. doi:10.3791/54521
doi: 10.3791/54521
[8]   李梦晓,冯丽娟,张福蓉,等.镜像视觉反馈疗法在康复训练中的研究进展[J].中国康复理论与实践,2017,23(12):1403-1406. doi:10.3969/j.issn.1006-9771.2017.12.007
LI Meng-xiao, FENG Li-juan, ZHANG Fu-rong, et al. Mirror visual feedback therapy for rehabilitation training (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2017, 23(12): 1403-1406.
doi: 10.3969/j.issn.1006-9771.2017.12.007
[9]   KIM H, MILLER L M, FEDULOW I, et al. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2): 153-164. doi:10.1109/tnsre.2012.2207462
doi: 10.1109/tnsre.2012.2207462
[10]   丁力,贾杰.镜像疗法在中老年脑卒中患者功能恢复中的应用现状[J].老年医学与保健,2015,21(3):188-190. doi:10.3969/j.issn.1008-8296.2015-23
DING Li, JIA Jie. Application status of mirror therapy in functional recovery of middle-aged and elderly stroke patients[J]. Geriatrics and Health Care, 2015, 21(3): 188-190.
doi: 10.3969/j.issn.1008-8296.2015-23
[11]   陈臻,刘佳敏,陆晓,等.镜像康复机器人在偏瘫康复中的应用研究[J].中国康复医学杂志,2020,35(8):903-906. doi:10.3969/j.issn.1001-1242.2020.08.003
CHEN Zhen, LIU Jia-min, LU Xiao, et al. Application research of mirror rehabilitation robot in hemiplegia rehabilitation[J]. Chinese Journal of Rehabilitation Medicine, 2020, 35(8): 903-906.
doi: 10.3969/j.issn.1001-1242.2020.08.003
[12]   SHAHBAZI M, ATASHZAR S F, TAVAKOLI M, et al. Robotics-assisted mirror rehabilitation therapy: a therapist-in-the-loop assist-as-needed architecture[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1954-1965. doi:10.1109/tmech.2016.2551725
doi: 10.1109/tmech.2016.2551725
[13]   丁宝杰,韩建海,李向攀,等.气动上肢康复机器人伺服控制和运动规划研究[J].液压与气动,2020(4):67-72. doi:10.11832/j.issn.1000-4858.2020.04.011
DING Bao-jie, HAN Jian-hai, LI Xiang-pan, et al. Servo control and motion planning of pneumatic upper-limb rehabilitation robot[J]. Chinese Hydraulics & Pneumatics, 2020(4): 67-72.
doi: 10.11832/j.issn.1000-4858.2020.04.011
[14]   瞿畅,吴炳,陈厚军,等.体感控制的上肢外骨骼镜像康复机器人系统[J].中国机械工程,2018,29(20):94-99. doi:10.3969/j.issn.1004-132X.2018.20.014
QU Chang, WU Bing, CHEN Hou-jun, et al. Upper-limb exoskeletal mirror rehabilitation robot systems based on motion sensing control[J]. China Mechanical Engineering, 2018, 29(20): 94-99.
doi: 10.3969/j.issn.1004-132X.2018.20.014
[15]   李启雷,金文光,耿卫东.基于无线惯性传感器的人体动作捕获方法[J].浙江大学学报(工学版),2012,46(2):280-285. doi:10.3785/j.issn.1008-973X.2012.02.016
LI Qi-lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(2): 280-285.
doi: 10.3785/j.issn.1008-973X.2012.02.016
[16]   刘杰,张玉茹,刘博.人手到灵巧手的运动映射实现[J].机器人,2003,25(5):444-447. doi:10.3321/j.issn:1002-0446.2003.05.013
LIU Jie, ZHANG Yu-ru, LIU Bo. Motion mapping of human hand to dexterous robotic hands[J]. Robot, 2003, 25(5): 444-447.
doi: 10.3321/j.issn:1002-0446.2003.05.013
[17]   李家霖,杨洋,杨铁,等.外骨骼式遥操作主手设计及主从异构映射算法研究[J].机器人,2020,42(6):651-660. doi:10.13973/j.cnki.robot.200077
LI Jia-lin, YANG Yang, YANG Tie, et al. Design of exoskeletal teleoperation master device and research on master-slave isomerism mapping algorithm[J]. Robot, 2020, 42(6): 651-660.
doi: 10.13973/j.cnki.robot.200077
[18]   刘理想,张静,徐亮,等.异构遥操作仿人机械臂灵巧作业控制[J].传感器与微系统,2018,37(7):39-41. doi: 10.13873/J.1000-9787(2018)07-0039-03
LIU Li-xiang, ZHANG Jing, XU Liang, et al. Dexterous work control of humanoid manipulator isomerism heterogeneous teleoperation[J]. Transducer and Microsystem Technologies, 2018, 37(7): 39-41.
doi: 10.13873/J.1000-9787(2018)07-0039-03
[19]   刘霞,潘成伟.异构型遥操作系统的定位与接触控制研究[J].电子科技大学学报,2018,47(4):532-538. doi:10.3969/j.issn.1001-0548.2018.04.010
LIU Xia, PAN Cheng-wei. Research on location and contact control of heterogeneous teleoperation systems[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(4): 532-538.
doi: 10.3969/j.issn.1001-0548.2018.04.010
[20]   汤卿,刘丝丝,尚留记,等.基于KUKA工业机器人的遥操作控制系统设计与异构主从控制方法研究[J].四川大学学报(工程科学版),2016,48(1):180-185. doi:10.15961/j.jsuese.2016.01.027
TANG Qing, LIU Si-si, SHANG Liu-ji, et al. Design of teleoperation system of KUKA industrial robot and the control algorithm with heterogeneous master/slave structure[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1): 180-185.
doi: 10.15961/j.jsuese.2016.01.027
No related articles found!