Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 220-230    DOI: 10.3785/j.issn.1006-754X.2022.00.013
Whole Machine and System Design     
System design and analysis of electricity-replace-oil driving device for oil and gas exploration
Chun-lin WANG1,2(),Chang LIU1,Hua YANG1,Hong QIN2,Guo-zhu CHEN1()
1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2.Polytechnic Institute, Zhejiang University, Hangzhou 310011, China
Download: HTML     PDF(3648KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to meet the needs of oil and gas exploration enterprises for clean, economic and highly reliable production under the background of carbon neutralization, a new electricity-replace-oil driving device based on the variable frequency speed regulation of two megawatt alternating current asynchronous motors was designed. Based on the modularization idea, the split modular box structure for high-voltage transformer and low-voltage transmission was designed,which improved the convenience of dispatch and use of the electricity-replace-oil driving device. The high-voltage transformer module was adopted the twelve-pulse rectifier transformer, which realized that only the transformer cost increased by 25% under the premise of no significant increase in the inverter cost, so as to greatly save the reactive power compensation cost. Especially in the high-power drilling section where the proportion of on-site electricity consumption was low, the measured power factor of the device was over 0.95. Aiming at the problem of unbalanced load in the dual-motor cooperative control, a PLC (programmable logic controller) control system based on the master-slave control structure was designed, and the speed matching control was combined with the converter droop control to control the motor speed deviation within 10%; at the same time, the designed control system could support the multi-place operation and remote monitoring of field data, which improved the reliability of the electricity-replace-oil driving device. The test run results showed that the designed electricity-replace-oil driving device could meet the actual engineering needs; compared with the traditional diesel driving device, it could save cost by 52% and reduce the carbon dioxide (CO2) emission by 27% per month. The designed device has certain practical value in the field of energy conservation in oil and gas exploration.



Key wordsoil and gas exploration      electricity-replace-oil      PLC (programmable logic controller) control system      dual-motor cooperative control      energy conservation and emission reduction     
Received: 31 March 2021      Published: 06 May 2022
CLC:  TH 9  
Corresponding Authors: Guo-zhu CHEN     E-mail: chunlin@zju.edu.cn;gzchen@zju.edu.cn
Cite this article:

Chun-lin WANG,Chang LIU,Hua YANG,Hong QIN,Guo-zhu CHEN. System design and analysis of electricity-replace-oil driving device for oil and gas exploration. Chin J Eng Design, 2022, 29(2): 220-230.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.013     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/220


用于油气勘探的电代油驱动装置系统设计与分析

为满足碳中和背景下油气勘探企业对清洁、经济、高可靠性生产的需求,设计了基于双兆瓦级交流异步电动机变频调速的新型电代油驱动装置。采用模块化思想,设计了高压变电、低压传动分体模块箱式结构,提高了电代油驱动装置调度使用的便捷性,其中高压变电模块采用十二脉整流变压器,实现了在变频器成本无显著增加的前提下仅变压器成本增加25%,大幅节省了无功补偿成本,尤其是在场用电占比低的大功率钻进段,该装置的实测功率因数达0.95以上。针对双电机协同控制可能存在负荷不均衡的问题,设计了基于主从控制结构的PLC(programmable logic controller,可编程逻辑控制器)控制系统,并采用转速匹配控制结合变频器下垂控制的方法,实现了将电机转速偏差控制在10%以内;同时,所设计的控制系统支持多地操作以及现场数据远程监控,提高了电代油驱动装置的可靠性。试运行结果表明,所设计的电代油驱动装置满足实际工程需求,相较于传统柴油驱动装置,每月可节省52%的成本和减少27%的二氧化碳(CO2)排放。所设计的装置在油气勘探节能领域具有一定的实用价值。


关键词: 油气勘探,  电代油,  PLC控制系统,  双电机协同控制,  节能减排 
Fig.1 Overall structure of transmission system of oil and gas exploration site
Fig.2 Electrical system structure of new electricity-replace-oil driving device
Fig.3 Electrical system structure of traditional electricity-replace-oil driving device
谐波次数谐波含量/%
传统电代油驱动装置 新型电代油驱动装置
5200
7140
1199
1388
1760
1950
Table 1 Comparison of theoretical harmonic content of different electricity-replace-oil driving devices
Fig.4 Relationship between measured power factor and apparent power of new electricity-replace-oil driving device under a certain drilling condition
Fig.5 Three-dimensional structure of high-voltage transformer module
Fig.6 Three-dimensional structure of low-voltage transmission module
Fig.7 Strain nephogram of box base of low-voltage transmission module
参数数值
极对数3
绝缘等级200
额定电压/V600
额定频率/Hz50.5
额定功率/kW1 200
额定转速/(r/min)1 000
工作转速/(r/min)0~2 599
恒转矩转速/(r/min)100~1 000
恒功转速/(r/min)1 000~1 680
Table 2 Parameters of three-phase alternating current asynchronous motor
Fig.8 Vector control speed regulation principle of motor in new electricity-replace-oil driving device
Fig.9 Mechanical characteristic curve of three-phase alternating current asynchronous motor
Fig.10 Droop control block diagram of motor in new electricity-replace-oil driving device
Fig.11 Paraller control flow of new electricity-replace-oil driving device
Fig.12 Shutdown control flow of new electricity-replace-oil driving device during parallel operation
Fig.13 Dual-motor cooperative control flow of new electricity-replace-oil driving device
Fig.14 Hardware structure block diagram of control system of new electricity-replace-oil driving device
Fig.15 Placement site of motor and operation cabinet on the motor side
Fig.16 Block diagram of PLC control program design for new electricity-replace-oil driving device
Fig.17 Human computer interaction interface of new electricity-replace-oil driving device during parallel operation under a certain actual working condition
Fig.18 Remote monitoring and data sharing scheme for operation status of new electricity-replace-oil driving device
Fig.19 Dynamic monitoring interface of active power of high-voltage transformer module total meter
设备设备使用成本能源使用成本
设备成本/万元使用寿命/a月使用成本/万元单价/(元/L)月消耗量/L月平均使用成本/万元
柴油驱动装置480152.706.405.10×105326.40
Table 3 Cost analysis of diesel driving device
设备部件设备使用成本能源使用成本

设备成本/

万元

使用寿命/

a

月使用成本/

万元

单价/

(元/kWh)

月消耗量/

kWh

月平均使用成本/

万元

高低压开关柜15100.130.801.93×106154.40
双路十二脉整流变压器40150.22
高压变电模块箱体15150.08
交流变频器(含制动电阻)163101.32
500 kVar无功补偿装置25100.21
PLC控制系统10100.08
空调15100.13
低压传动模块箱体15150.08
三相交流异步电动机80150.44
Table 4 Cost analysis of new electricity-replace-oil driving device
主要动力设备指标量值
1 200 kW柴油发动机燃油消耗率283.7 g/kWh
10 kV/3 150 kVA双路十二脉整流变压器效率98.5%
600 V/1200 kW交流变频器效率98.5%
YDZJ-20DDf型液耦效率96.0%
600 V/1 200 kW三相交流异步电动机效率96.0%
Table 5 Energy efficiency parameters of main power equipment of oil and gas exploration driving device
[1]   肖玖金,杨礼通,杨智富,等.模拟柴油污染对土壤动物群落结构的影响[J].浙江大学学报(农业与生命科学版),2021,47(1):89-97. doi:10.3785/j.issn.1008-9209.2020.04.021
XIAO Jiu-jin, YANG Li-tong, YANG Zhi-fu, et al. Effects of simulated diesel contamination on soil fauna community[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2021, 47(1): 89-97.
doi: 10.3785/j.issn.1008-9209.2020.04.021
[2]   VILLAMAINA Roberta, IACOBONE Umberto, NOVA Isabella, et al. Mechanistic insight in NO trapping on Pd/Chabazite systems for the low-temperature NOx removal from diesel exhausts[J]. Applied Catalysis B: Environmental, 2021, 284: 119724. doi:10.1016/j.apcatb. 2020.119724
doi: 10.1016/j.apcatb. 2020.119724
[3]   周淑慧,王军,梁严.碳中和背景下中国“十四五”天然气行业发展[J].天然气工业,2021,41(2):171-182. doi:10.3787/j.issn.1000-0976.2021.02.020
ZHOU Shu-hui, WANG Jun, LIANG Yan. Development of China ’ s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(2): 171-182.
doi: 10.3787/j.issn.1000-0976.2021.02.020
[4]   蔡勋育,赵培荣,高波,等.中国石化页岩气“十三五”发展成果与展望[J].石油与天然气地质,2021,42(1):16-27. doi:10.11743/ogg20210102
CAI Xun-yu, ZHAO Pei-rong, GAO Bo, et al. Sinopec’s shale gas development achievements during the ‘Thirteen Five-Year Plan’ period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1): 16-27.
doi: 10.11743/ogg20210102
[5]   田雨,谢梅英.新型大功率电动压裂泵组的研制[J].石油机械,2017,45(4):94-97. doi:10.16082/j.cnki.issn.1001-4578.2017.01.021
TIAN Yu, XIE Mei-ying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4): 94-97.
doi: 10.16082/j.cnki.issn.1001-4578.2017.01.021
[6]   刘晓媛,郑文青,张玉奎,等.超大型集装箱船的B型LNG燃料舱结构强度分析[J].舰船科学技术,2020,42(9):81-84. doi:10.3404/j.issn.1672-7649.2020.05.016
LIU Xiao-yuan, ZHENG Wen-qing, ZHANG Yu-kui, et al. The structure strength analysis of type B LNG fuel tank for ultra-large container ship[J]. Ship Science and Technology, 2020, 42(9): 81-84.
doi: 10.3404/j.issn.1672-7649.2020.05.016
[7]   徐敏,汤明文,王刚.集装箱船结构强度评估中的破损工况[J].船舶与海洋工程,2020,36(6):67-71.
XU Min, TANG Ming-wen, WANG Gang. A study on the damaged conditions in structural strength assessment of container ships[J]. Naval Architecture and Ocean Engineering, 2020, 36(6): 67-71.
[8]   国家能源局.中华人民共和国石油行业标准石油钻机用电气设备规范第一部分:主电动机::SY/T 6725.1—2014[S].北京:石油工业出版社,2014:4-5. doi:10.3969/j.issn.1006-8910.2021.07.002
National Energy Administration’ People Republic of China petroleum industry standard specification for electrical equipment for petroleum drilling rigs Part 1: main motor[D]. SY/T 6725.1‒2014[S]. Beijing: Petroleum Industry Press, 2014: 4-5.
doi: 10.3969/j.issn.1006-8910.2021.07.002
[9]   张新国.钻井队节能技术与应用研究[D].大庆:东北石油大学,2015:37-38.
ZHANG Xin-guo. Drilling crew energy saving technology and application research[D]. Daqing: Northest Petroleum University, 2015: 37-38.
[10]   靳运莘.多电机协调控制与容错策略分析[D].哈尔滨:哈尔滨工业大学,2016:18-38.
JIN Yun-shen. Research on multi-motor coordinated[D]. Harbin: Harbin Institute of Technology, 2016: 18-38.
[11]   毕云峰.基于现场总线的多电机同步控制的研究[D]. 无锡:江南大学,2008:21-22.
BI Yun-feng. The research of multi-motors synchronization based on field-bus[D]. Wuxi: Jiangnan University, 2008: 21-22.
[12]   李军超,黄树槐,冯仪.双电机驱动的电动螺旋压力机PLC控制系统[J].华中科技大学学报(自然科学版),2008,36(7):116-119. doi:10.3321/j.issn:1671-4512.2008.07.031
LI Jun-chao, HUANG Shu-huai, FENG Yi. PLC-based control system for the electrical screw press driven by double motors[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2008, 36(7): 116-119.
doi: 10.3321/j.issn:1671-4512.2008.07.031
[13]   王桂荣,马梦娜,刘大亮.基于遗传算法寻优的双电机控制系统研究[J].电气传动,2014,44(9):45-48,69. doi:10.3969/j.issn.1001-2095.2014.09.010
WANG Gui-rong, MA Meng-na, LIU Da-liang. Research for double-motor control system based on genetic algorithm[J]. Electric Drive, 2014, 44(9): 45-48, 69.
doi: 10.3969/j.issn.1001-2095.2014.09.010
[14]   陆晟波,陈强,南余荣.多电机系统自适应非奇异固定时间同步控制[J].控制工程,2020,27(9):1545-1552. doi:10.14107/j.cnki.kzgc.20180330
LU Sheng-bo, CHEN Qiang, Yu-rong NAN. Adaptive non-singular fixed-time synchronization control for multi-motor systems[J]. Control Engineering of China, 2020, 27(9): 1545-1552.
doi: 10.14107/j.cnki.kzgc.20180330
[15]   陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2010:155-199.
CHEN Bo-shi. Control systems of electric drives-motion control systems[M]. Beijing: China Machine Press, 2010: 155-199.
[16]   张健,周霞,刘旭,等.机械钻机电代油节能减排效果测试方法研究[J].钻采工艺,2020,43(5):82-83,109. doi:10.3969/J.ISSN.1006-768X.2020.05.23
ZHANG Jian, ZHOU Xia, LIU Xu, et al. Research on energy-saving and emission reduction effect test of replacing oil by electricity in machinery drilling rig[J]. Drilling & Production Technology, 2020, 43(5): 82-83, 109.
doi: 10.3969/J.ISSN.1006-768X.2020.05.23
No related articles found!