Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2635-2644    DOI: 10.3785/j.issn.1008-973X.2025.12.018
    
Reinforcement of completely weathered granite by nano-silica sol and its permeability law
Zhiyuan CAI(),Wei YANG*(),Yifan HE,Muyuan SONG,Guolian ZUO,Wei CHEN
College of Civil Engineering, Hunan University, Changsha 410082, China
Download: HTML     PDF(1658KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mechanical properties and permeability characteristics of completely weathered granite soil after silica sol reinforcement were studied by unconfined compressive strength test, triaxial compression test and variable-head permeability test. The results showed that the reinforcement effect of silica sol was closely related to the slurry ratio and the strength increased with time. After 28 days of silica sol reinforcement, the unconfined compressive strength of completely weathered granite soil reached up to 239.0 kPa, and the permeability coefficient decreased to the order of 10?8 cm/s. In order to explore the infiltration and diffusion law of silica sol in completely weathered granite strata, a grouting simulation test was carried out. The test results showed that under the grouting pressure of 10 kPa, the diffusion radius of silica sol slurry in completely weathered granite soil with different dry densities of 1.30 g/cm3,1.36 g/cm3 and 1.42 g/cm3 reached 10.40 cm, 7.85 cm and 5.10 cm respectively. In addition, considering the time-varying viscosity of silica sol and the influence of soil tortuosity, the traditional theoretical formula of infiltration grouting was modified. The modified formula can more accurately describe the infiltration and diffusion law of silica sol in completely weathered granite soil and estimate its infiltration and diffusion range.



Key wordssilica sol      completely weathered granite      infiltration grouting      seepage control reinforcement      grouting simulation test      time-variation of viscosity      tortuosity     
Received: 04 December 2024      Published: 25 November 2025
CLC:  TU 45  
Fund:  湖南省自然科学基金资助项目(2024JJ2020);湖南省科技创新青年科技人才资助项目(2022RC1174).
Corresponding Authors: Wei YANG     E-mail: caizhiyuan@hnu.edu.cn;yangwei86@hnu.edu.cn
Cite this article:

Zhiyuan CAI,Wei YANG,Yifan HE,Muyuan SONG,Guolian ZUO,Wei CHEN. Reinforcement of completely weathered granite by nano-silica sol and its permeability law. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2635-2644.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.018     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2635


纳米硅溶胶加固全风化花岗岩及其渗透规律

通过无侧限抗压强度、三轴压缩、变水头渗透试验对硅溶胶加固后全风化花岗岩土体的力学特性及渗透特性展开研究. 结果表明,硅溶胶的加固效果与浆液配比紧密相关且强度随着时间的增长不断增强. 硅溶胶加固28 d后,全风化花岗岩土体的无侧限抗压强度最高达到239.0 kPa,渗透系数下降至10?8 cm/s数量级. 为了探明硅溶胶在全风化花岗岩地层中的渗透扩散规律,进行注浆模拟试验,结果表明在10 kPa的注浆压力下,硅溶胶浆液在干密度为1.30、1.36、1.42 g/cm3的全风化花岗岩土体中扩散半径分别达到10.40、7.85、5.10 cm. 考虑硅溶胶黏度时变性与土体迂曲度的影响对传统渗透注浆理论公式进行了修正,修正后的公式能够更加准确地描述硅溶胶在全风化花岗岩土体中的渗透扩散规律,估算其渗透扩散范围.


关键词: 硅溶胶,  全风化花岗岩,  渗透注浆,  防渗加固,  注浆模拟试验,  黏度时变性,  迂曲度 
Fig.1 Granular gradation curve of completely weathered granite
Fig.2 Silica sol micelle structure
Fig.3 Silica sol and its gels
编号试样ws/%mwn/%wsm/%wnm/%
1S30-4-8304∶1824.01.6
2S30-6-10306∶11025.71.4
3S30-8-12308∶11226.71.3
4S25-4-10254∶11020.02.0
5S25-6-12256∶11221.41.7
6S25-8-8258∶1822.20.9
7S20-4-12204∶11216.02.4
8S20-6-8206∶1817.11.1
9S20-8-10208∶11017.81.1
Tab.1 Orthogonal test scheme of silica sol ratio
Fig.4 Viscosity measurement of silica sol
Fig.5 Determination of silica sol gel time
Fig.6 Silica sol reinforced soil specimens
Fig.7 Grouting simulation test setup
Fig.8 Viscosity change curve of silica sol slurry with time under different ratios
试验编号试样T0/minT1/min
正交试验中硅溶胶浆液1S30-4-82858
2S30-6-102756
3S30-8-123775
4S25-4-101834
5S25-6-123770
6S25-8-8504720
7S20-4-12713
8S20-6-8510790
9S20-8-10480750
补充试验中硅溶胶浆液10S30-4-10816
11S30-8-10103185
12S30-6-896150
13S30-6-121224
14S25-6-1080155
15S20-6-10222430
Tab.2 T0 and T1 of silica sol slurry under different ratios
Fig.9 Linear fit between viscosity inflection time and gel time of silica sol slurry
Fig.10 Fitting curve between viscosity inflection time of silica sol slurry and parameter λ
Fig.11 Unconfined compressive strength of silica sol reinforced soil under different ratios and different curing days
Fig.12 Maximum deviatoric stress of silica sol reinforced soil under different ratios and different confining pressures
Fig.13 Stress-strain curve of S30-8-12 silica sol reinforced soil
编号试样c/kPaφ/(°)
1S30-4-884.31.8
2S30-6-1095.12.5
3S30-8-12104.34.4
4S25-4-1053.30.9
5S25-6-1267.82.1
6S25-8-857.91.7
7S20-4-1248.10.5
8S20-6-847.90.7
9S20-8-1049.60.3
Tab.3 Shear strength index of silica sol reinforced soil under different ratios
编号试样K/(cm·s?1)
dc=0dc=7dc=14dc=28
1S30-4-81.20×10?81.40×10?81.35×10?81.38×10?8
2S30-6-101.77×10?81.68×10?81.52×10?81.47×10?8
3S30-8-121.02×10?81.36×10?81.23×10?81.05×10?8
4S25-4-103.99×10?83.00×10?82.82×10?82.73×10?8
5S25-6-122.94×10?82.39×10?82.36×10?82.35×10?8
6S25-8-82.36×10?59.41×10?62.81×10?61.59×10?8
7S20-4-123.34×10?56.69×10?61.46×10?61.09×10?7
8S20-6-85.24×10?61.81×10?64.15×10?82.60×10?8
9S20-8-104.01×10?61.21×10?62.43×10?82.42×10?8
Tab.4 Permeability coefficient of silica sol reinforced soil under different ratios and different curing days
Fig.14 Silica sol slurry cylindrical diffusion diagram
编号ρd/(g·cm?3)n/%ΓK/(cm·s?1)
11.3050.01.2501.32×10?3
21.3647.71.2605.80×10?4
31.4245.01.2752.73×10?4
Tab.5 Soil parameters for each group in grouting simulation test
Fig.15 Size of grouting stone body in each group
Fig.16 Comparison of diffusion radius results of silica sol slurry in soils with different dry densities
[1]   秦效荣, 姚玉增, 何宏平, 等 广东梅州花岗岩风化壳剖面的可见光-短波红外反射光谱特征及其对风化强度的指示[J]. 地球化学, 2020, 49 (4): 422- 434
QIN Xiaorong, YAO Yuzeng, HE Hongping, et al Visible to shortwave-infrared spectroscopic characteristics and weathering intensity indicators of a weathering-crust-type REE deposit in granite bedrock, from Meizhou, Guangdong Province[J]. Geochimica, 2020, 49 (4): 422- 434
[2]   LIU X, ZHANG X, KONG L, et al Chemical weathering indices and how they relate to the mechanical parameters of granite regolith from Southern China[J]. CATENA, 2022, 216: 106400
doi: 10.1016/j.catena.2022.106400
[3]   张树坡, 简文星, 蒋天娇, 等 赣南花岗岩风化带岩土体强度特征及边坡破坏模式分析[J]. 科学技术与工程, 2020, 20 (15): 6196- 6204
ZHANG Shupo, JIAN Wenxing, JIANG Tianjiao, et al Strength characteristics of granite weathering zone and analysis of slope failure mode in south Jiangxi Province[J]. Science Technology and Engineering, 2020, 20 (15): 6196- 6204
[4]   周小文, 罗兴财 全风化花岗岩与花岗岩残积土的判别及物理力学性质对比[J]. 长江科学院院报, 2022, 39 (4): 1- 7
ZHOU Xiaowen, LUO Xingcai Identification and physical mechanical property comparison between completely decomposed granite and granite residual soil[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39 (4): 1- 7
[5]   李传懿, 陈志波 海底强风化花岗岩K0固结三轴试验尺寸效应[J]. 中南大学学报: 自然科学版, 2020, 51 (6): 1646- 1653
LI Chuanyi, CHEN Zhibo Specimen size effect of strongly weathered granite of seabed in triaxial tests under K0-consolidation condition[J]. Journal of Central South University: Science and Technology, 2020, 51 (6): 1646- 1653
[6]   SANDEEP C S, HE H, SENETAKIS K Experimental and analytical studies on the influence of weathering degree and ground-environment analog conditions on the tribological behavior of granite[J]. Engineering Geology, 2022, 304: 106644
doi: 10.1016/j.enggeo.2022.106644
[7]   苏兴矩, 丘仁科, 邱礼球, 等 富水全风化花岗岩隧道注浆加固技术研究[J]. 地下空间与工程学报, 2021, 17 (Suppl. 2): 788- 792,813
SU Xingju, QIU Renke, QIU Liqiu, et al Study on grouting reinforcement technology of water rich fully weathered granite tunnel[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Suppl. 2): 788- 792,813
[8]   齐延海, 李术才, 李召峰, 等 全风化花岗岩富水地层注浆治理研究与应用[J]. 中南大学学报: 自然科学版, 2019, 50 (3): 694- 703
QI Yanhai, LI Shucai, LI Zhaofeng, et al Study and application of grouting governing of completely weathered granite in water-rich stratum[J]. Journal of Central South University: Science and Technology, 2019, 50 (3): 694- 703
[9]   刘天乐, 全奇, 蒋国盛, 等 含CaCl2水基聚合物钻井液沿井周地层渗透规律研究[J]. 地质科技通报, 2021, 40 (5): 263- 271
LIU Tianle, QUAN Qi, JIANG Guosheng, et al Study on permeability law of water-based polymer drilling fluid containing CaCl2 in wellbore formation[J]. Bulletin of Geological Science and Technology, 2021, 40 (5): 263- 271
[10]   龚晓南. 地基处理技术及发展展望: 纪念中国土木工程学会岩土工程分会地基处理学术和会成立三十周年(1984—2014)(上、下册) [EB/OL]. (2015-09-17)[2025-10-14]. https://navi.cnki.net/.
[11]   赵钰, 郑洪, 曹函, 等 全风化花岗岩地层中高固相离析浆液灌浆机理研究[J]. 水文地质工程地质, 2021, 48 (2): 78- 88
ZHAO Yu, ZHENG Hong, CAO Han, et al A study of grouting mechanism of high solid phase segregation grout in fully weathered granite[J]. Hydrogeology and Engineering Geology, 2021, 48 (2): 78- 88
[12]   王港, 张先伟, 刘新宇, 等 厦门花岗岩残积土的压缩变形特性及其微观机制[J]. 岩土力学, 2021, 42 (12): 3291- 3300,3314
WANG Gang, ZHANG Xianwei, LIU Xinyu, et al Compression characteristics and microscopic mechanism of Xiamen granite residual soil[J]. Rock and Soil Mechanics, 2021, 42 (12): 3291- 3300,3314
[13]   CHRISTENSEN P W, KLARBRING A, PANG J S, et al Formulation and comparison of algorithms for frictional contact problems[J]. International Journal for Numerical Methods in Engineering, 1998, 42 (1): 145- 173
doi: 10.1002/(SICI)1097-0207(19980515)42:1<145::AID-NME358>3.0.CO;2-L
[14]   FUNEHAG J, GUSTAFSON G Design of grouting with silica Sol in hard rock: new design criteria tested in the field, Part II[J]. Tunnelling and Underground Space Technology, 2008, 23 (1): 9- 17
doi: 10.1016/j.tust.2006.12.004
[15]   BUTRÓN C, GUSTAFSON G, FRANSSON Å, et al Drip sealing of tunnels in hard rock: a new concept for the design and evaluation of permeation grouting[J]. Tunnelling and Underground Space Technology, 2010, 25 (2): 114- 121
doi: 10.1016/j.tust.2009.09.008
[16]   刘灿平. 改性硅溶胶灌浆材料的研发及其砂土灌浆模拟 [D]. 天津: 天津大学, 2018.
LIU Canping. Development of modified silica sol grouting material and its sand grouting simulation [D]. Tianjin: Tianjin University , 2018.
[17]   周春花. 纳米硅溶胶在低渗透性粉砂中的渗透扩散规律及加固效果研究 [D]. 成都: 西华大学, 2023.
ZHOU Chunhua. Study on the diffusion law and reinforcement effect of nano-silica sol in low permeability silty sand [D]. Chengdu: Xihua University, 2023.
[18]   FRACCICA A, SPAGNOLI G, ROMERO E, et al Permeation grouting of silt-sand mixtures[J]. Transportation Geotechnics, 2022, 35: 100800
doi: 10.1016/j.trgeo.2022.100800
[19]   FUNEHAG J Sealing of narrow fractures in hard rock: a case study in Hallandsas, Sweden[J]. Tunnelling and Underground Space Technology, 2004, 19 (4): 1- 8
[20]   中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.
[21]   中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007 [S]. 北京: 中国计划出版社, 2008.
[22]   杨微, 何一凡, 陈仁朋, 等. 纳米硅溶胶特性及其在岩土工程中的应用研究进展[EB/OL]. (2024-11-01)[2024-12-04]. https://link.cnki.net/doi/10.15951/j.tmgcxb.24070535.
[23]   PERSOFF P, APPS J, MORIDIS G, et al Effect of dilution and contaminants on sand grouted with colloidal silica[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (6): 461- 469
doi: 10.1061/(ASCE)1090-0241(1999)125:6(461)
[24]   ZHANG W, YANG F, HAN C, et al Fissure grouting mechanism accounting for the time-dependent viscosity of silica Sol[J]. ACS Omega, 2021, 6 (42): 28140- 28149
doi: 10.1021/acsomega.1c04216
[25]   戴邵衡, 童晨曦, 颜瀚, 等 基于抽样可靠性的土体迂曲度计算[J]. 岩土力学, 2021, 42 (3): 855- 862
DAI Shaoheng, TONG Chenxi, YAN Han, et al Calculation of soil tortuosity based on sampling reliability[J]. Rock and Soil Mechanics, 2021, 42 (3): 855- 862
[1] Hui CHENG,Hongyuan FU,Ling ZENG,Xiaowei YU,Jintao LUO,Jie LIU. Mechanical properties and constitutive model of silty mudstone considering drying-wetting cycle path[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1912-1922.
[2] Yayuan HU,Fei YE. Constitutive model of saturated fractured porous rock mass based on mixture theory[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1446-1456.
[3] Jun YU,Dongkai LI. Analytical study of steady state seepage field of tunnel vault leakage[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 838-846.
[4] Ruo-tao LIU,Guan RONG,Yan-di WU,Bo-wen LI. Water-rock heat exchange in granite fractures[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2244-2253.
[5] Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.
[6] Xiao-jie GAO,Zhao-feng LI,Jiu-qing LIN,Yun-long SONG,Shang-jie QING,Xiang-dong CUI,Xiao-guang PENG. Grouting technology for surface soft soil in coastal tidal karst area and its application[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 552-561.
[7] Xiao ZHANG,Hao YU,Zhuang LI,Yan-shun LIU,Zi-dong ZHANG,Xin-yu JI,Xiang-hui LI. Discrete element study on effect of cyclic loading strengthening on meso-destruction of granite[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2303-2312.
[8] Jia-jun SHU,Zheng-ding DENG,Bing-ni WU,Hua-dong GUAN,Mao-sen CAO. Stability deterioration model of toppling unstable rock mass under freeze-thaw cycle[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1714-1723.
[9] Xi CHEN,Ya-wu ZENG. Improved morphology characterization method and sampling effect of rough rock joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2161-2169.
[10] Jian-ping ZHAO,Jian-wu LI,Lin Bi,Bei-bei CHENG. Analytical solution of seepage field and reasonable support parameters of tunnel in water rich area[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2142-2150.
[11] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[12] ZHAI Chao-jiao, XIA Tang-dai, DU Guo-qing,LIU Zhi-jun. Transient response of cavity in half-space subjected to shock load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1043-1048.
[13] SHI Li, CAI Yuan-qiang, XU Chang-jie. Time step length determination of Newmark method for dynamic responses of railway tracks[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 228-235.
[14] YE Qiu-hong, LING Dao-sheng. Limit equilibrium analysis method based on vector sum method for 3D slope[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1097-1103.
[15] TANG Liang-qin, LIU Dong-yan, NIE De-xin. Strength parameter selection of weak intercalated layer in
Xiangjiaba bed foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 162-168.